Suppr超能文献

通过全基因组上位性分析鉴定的抗性、毒力和核心机制基因的相互作用网络。

Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis.

作者信息

Skwark Marcin J, Croucher Nicholas J, Puranen Santeri, Chewapreecha Claire, Pesonen Maiju, Xu Ying Ying, Turner Paul, Harris Simon R, Beres Stephen B, Musser James M, Parkhill Julian, Bentley Stephen D, Aurell Erik, Corander Jukka

机构信息

Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America.

Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom.

出版信息

PLoS Genet. 2017 Feb 16;13(2):e1006508. doi: 10.1371/journal.pgen.1006508. eCollection 2017 Feb.

Abstract

Recent advances in the scale and diversity of population genomic datasets for bacteria now provide the potential for genome-wide patterns of co-evolution to be studied at the resolution of individual bases. Here we describe a new statistical method, genomeDCA, which uses recent advances in computational structural biology to identify the polymorphic loci under the strongest co-evolutionary pressures. We apply genomeDCA to two large population data sets representing the major human pathogens Streptococcus pneumoniae (pneumococcus) and Streptococcus pyogenes (group A Streptococcus). For pneumococcus we identified 5,199 putative epistatic interactions between 1,936 sites. Over three-quarters of the links were between sites within the pbp2x, pbp1a and pbp2b genes, the sequences of which are critical in determining non-susceptibility to beta-lactam antibiotics. A network-based analysis found these genes were also coupled to that encoding dihydrofolate reductase, changes to which underlie trimethoprim resistance. Distinct from these antibiotic resistance genes, a large network component of 384 protein coding sequences encompassed many genes critical in basic cellular functions, while another distinct component included genes associated with virulence. The group A Streptococcus (GAS) data set population represents a clonal population with relatively little genetic variation and a high level of linkage disequilibrium across the genome. Despite this, we were able to pinpoint two RNA pseudouridine synthases, which were each strongly linked to a separate set of loci across the chromosome, representing biologically plausible targets of co-selection. The population genomic analysis method applied here identifies statistically significantly co-evolving locus pairs, potentially arising from fitness selection interdependence reflecting underlying protein-protein interactions, or genes whose product activities contribute to the same phenotype. This discovery approach greatly enhances the future potential of epistasis analysis for systems biology, and can complement genome-wide association studies as a means of formulating hypotheses for targeted experimental work.

摘要

目前,细菌群体基因组数据集在规模和多样性方面取得的进展,使得在单个碱基分辨率下研究全基因组共同进化模式成为可能。在此,我们描述了一种新的统计方法——genomeDCA,它利用计算结构生物学的最新进展来识别处于最强共同进化压力下的多态性位点。我们将genomeDCA应用于两个代表主要人类病原体肺炎链球菌(肺炎球菌)和化脓性链球菌(A组链球菌)的大型群体数据集。对于肺炎球菌,我们在1936个位点之间鉴定出5199个假定的上位性相互作用。超过四分之三的连接位于pbp2x、pbp1a和pbp2b基因内的位点之间,这些基因的序列对于确定对β-内酰胺抗生素的不敏感性至关重要。基于网络的分析发现,这些基因还与编码二氢叶酸还原酶的基因相关联,二氢叶酸还原酶的变化是甲氧苄啶耐药性的基础。与这些抗生素抗性基因不同,一个由384个蛋白质编码序列组成的大型网络组件包含许多对基本细胞功能至关重要的基因,而另一个不同的组件则包括与毒力相关的基因。A组链球菌(GAS)数据集群体代表一个克隆群体,其遗传变异相对较少,全基因组连锁不平衡水平较高。尽管如此,我们还是能够确定两种RNA假尿苷合酶,它们各自与染色体上的一组独立位点紧密相连,代表了共同选择的生物学上合理的靶点。这里应用的群体基因组分析方法识别出具有统计学意义的共同进化位点对,这些位点对可能源于反映潜在蛋白质-蛋白质相互作用的适应性选择相互依赖,或者其产物活性有助于相同表型的基因。这种发现方法极大地增强了系统生物学上位性分析的未来潜力,并且可以作为一种为靶向实验工作提出假设的手段,补充全基因组关联研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bc4/5312804/a07f7dfa8b78/pgen.1006508.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验