Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain.
Sequentia Biotech, Cerdanyola del Vallès, 08193, Barcelona, Spain.
Plant J. 2017 May;90(3):520-534. doi: 10.1111/tpj.13509. Epub 2017 Mar 27.
The effective anti-malarial drug artemisinin (AN) isolated from Artemisia annua is relatively expensive due to the low AN content in the plant as AN is only synthesized within the glandular trichomes. Therefore, genetic engineering of A. annua is one of the most promising approaches for improving the yield of AN. In this work, the AaMYB1 transcription factor has been identified and characterized. When AaMYB1 is overexpressed in A. annua, either exclusively in trichomes or in the whole plant, essential AN biosynthetic genes are also overexpressed and consequently the amount of AN is significantly increased. Artemisia AaMYB1 constitutively overexpressing plants displayed a greater number of trichomes. In order to study the role of AaMYB1 on trichome development and other possibly connected biological processes, AaMYB1 was overexpressed in Arabidopsis thaliana. To support our findings in Arabidopsis thaliana, an AaMYB1 orthologue from this model plant, AtMYB61, was identified and atmyb61 mutants characterized. Both AaMYB1 and AtMYB61 affected trichome initiation, root development and stomatal aperture in A. thaliana. Molecular analyses indicated that two crucial trichome activator genes are misexpressed in atmyb61 mutant plants and in plants overexpressing AaMYB1. Furthermore, AaMYB1 and AtMYB61 are also essential for gibberellin (GA) biosynthesis and degradation in both species by positively affecting the expression of the enzymes that convert GA into the bioactive GA as well as the enzymes involved in the degradation of GA . Overall, these results identify AaMYB1/AtMYB61 as a key component of the molecular network that connects important biosynthetic processes, and reveal its potential value for AN production through genetic engineering.
从青蒿中分离出的有效抗疟药物青蒿素(AN)由于植物中 AN 含量低,相对较为昂贵,因为 AN 仅在腺毛中合成。因此,青蒿遗传工程是提高 AN 产量的最有前途的方法之一。在这项工作中,鉴定并表征了 AaMYB1 转录因子。当 AaMYB1 在青蒿中过表达时,无论是在毛状体中还是在整个植物中过表达,重要的 AN 生物合成基因也过表达,因此 AN 的含量显著增加。青蒿 AaMYB1 组成型过表达植物表现出更多的毛状体。为了研究 AaMYB1 在毛状体发育和其他可能相关的生物学过程中的作用,将 AaMYB1 在拟南芥中过表达。为了支持我们在拟南芥中的发现,鉴定了来自该模式植物的 AaMYB1 同源物 AtMYB61,并对 atmyb61 突变体进行了表征。AaMYB1 和 AtMYB61 都影响拟南芥毛状体的起始、根的发育和气孔开度。分子分析表明,两个关键的毛状体激活基因在 atmyb61 突变体植物和过表达 AaMYB1 的植物中表达错误。此外,AaMYB1 和 AtMYB61 对于两种物种中的赤霉素(GA)生物合成和降解也是必不可少的,通过正向影响将 GA 转化为生物活性 GA 的酶以及参与 GA 降解的酶的表达。总体而言,这些结果确定 AaMYB1/AtMYB61 是连接重要生物合成过程的分子网络的关键组成部分,并通过遗传工程揭示了其在 AN 生产中的潜在价值。