Suppr超能文献

一种基于多参数磁共振成像的风险模型,用于在活检前确定前列腺癌的风险。

A multiparametric magnetic resonance imaging-based risk model to determine the risk of significant prostate cancer prior to biopsy.

作者信息

van Leeuwen Pim J, Hayen Andrew, Thompson James E, Moses Daniel, Shnier Ron, Böhm Maret, Abuodha Magdaline, Haynes Anne-Maree, Ting Francis, Barentsz Jelle, Roobol Monique, Vass Justin, Rasiah Krishan, Delprado Warick, Stricker Phillip D

机构信息

St. Vincent's Prostate Cancer Centre, Darlinghurst, New South Wales, Australia.

Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.

出版信息

BJU Int. 2017 Dec;120(6):774-781. doi: 10.1111/bju.13814. Epub 2017 Mar 31.

Abstract

OBJECTIVE

To develop and externally validate a predictive model for detection of significant prostate cancer.

PATIENTS AND METHODS

Development of the model was based on a prospective cohort including 393 men who underwent multiparametric magnetic resonance imaging (mpMRI) before biopsy. External validity of the model was then examined retrospectively in 198 men from a separate institution whom underwent mpMRI followed by biopsy for abnormal prostate-specific antigen (PSA) level or digital rectal examination (DRE). A model was developed with age, PSA level, DRE, prostate volume, previous biopsy, and Prostate Imaging Reporting and Data System (PIRADS) score, as predictors for significant prostate cancer (Gleason 7 with >5% grade 4, ≥20% cores positive or ≥7 mm of cancer in any core). Probability was studied via logistic regression. Discriminatory performance was quantified by concordance statistics and internally validated with bootstrap resampling.

RESULTS

In all, 393 men had complete data and 149 (37.9%) had significant prostate cancer. While the variable model had good accuracy in predicting significant prostate cancer, area under the curve (AUC) of 0.80, the advanced model (incorporating mpMRI) had a significantly higher AUC of 0.88 (P < 0.001). The model was well calibrated in internal and external validation. Decision analysis showed that use of the advanced model in practice would improve biopsy outcome predictions. Clinical application of the model would reduce 28% of biopsies, whilst missing 2.6% significant prostate cancer.

CONCLUSIONS

Individualised risk assessment of significant prostate cancer using a predictive model that incorporates mpMRI PIRADS score and clinical data allows a considerable reduction in unnecessary biopsies and reduction of the risk of over-detection of insignificant prostate cancer at the cost of a very small increase in the number of significant cancers missed.

摘要

目的

开发并外部验证一种用于检测显著性前列腺癌的预测模型。

患者与方法

该模型的开发基于一个前瞻性队列,包括393名在活检前接受多参数磁共振成像(mpMRI)的男性。然后,对来自另一家机构的198名男性进行回顾性分析,这些男性因前列腺特异性抗原(PSA)水平异常或直肠指检(DRE)异常接受了mpMRI检查并随后进行了活检,以检验该模型的外部有效性。以年龄、PSA水平、DRE、前列腺体积、既往活检以及前列腺影像报告和数据系统(PIRADS)评分作为显著性前列腺癌(Gleason评分7分且4级成分>5%、≥20%的穿刺针芯阳性或任何一个穿刺针芯中癌灶≥7 mm)的预测因子,开发了一个模型。通过逻辑回归研究概率。用一致性统计量量化判别性能,并通过自抽样重采样进行内部验证。

结果

总共393名男性有完整数据,其中149名(37.9%)患有显著性前列腺癌。虽然变量模型在预测显著性前列腺癌方面具有良好的准确性,曲线下面积(AUC)为0.80,但高级模型(纳入mpMRI)的AUC显著更高,为0.88(P<0.001)。该模型在内部和外部验证中校准良好。决策分析表明,在实践中使用高级模型将改善活检结果预测。该模型的临床应用将减少28%的活检,同时漏诊2.6%的显著性前列腺癌。

结论

使用纳入mpMRI的PIRADS评分和临床数据的预测模型对显著性前列腺癌进行个体化风险评估,可大幅减少不必要的活检,并降低检测到无意义前列腺癌的风险,代价是漏诊的显著性癌症数量略有增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验