Suppr超能文献

一种基于前列腺影像报告和数据系统2.1版的临床显著性前列腺癌诊断预测模型。

A Prostate Imaging-Reporting and Data System version 2.1-based predictive model for clinically significant prostate cancer diagnosis.

作者信息

Gelikman David G, Azar William S, Yilmaz Enis C, Lin Yue, Shumaker Luke A, Fang Andrew M, Harmon Stephanie A, Huang Erich P, Parikh Sahil H, Hyman Jason A, Schuppe Kyle, Nix Jeffrey W, Galgano Samuel J, Merino Maria J, Choyke Peter L, Gurram Sandeep, Wood Bradford J, Rais-Bahrami Soroush, Pinto Peter A, Turkbey Baris

机构信息

Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

出版信息

BJU Int. 2025 May;135(5):751-759. doi: 10.1111/bju.16616. Epub 2024 Dec 9.

Abstract

OBJECTIVES

To develop and validate a Prostate Imaging-Reporting and Data System (PI-RADS) version 2.1 (v2.1)-based predictive model for diagnosis of clinically significant prostate cancer (csPCa), integrating clinical and multiparametric magnetic resonance imaging (mpMRI) data, and compare its performance with existing models.

PATIENTS AND METHODS

We retrospectively analysed data from patients who underwent prospective mpMRI assessment using the PI-RADS v2.1 scoring system and biopsy at our institution between April 2019 and December 2023. A 'Clinical Baseline' model using patient demographics and laboratory results and an 'MRI Added' model additionally incorporating PI-RADS v2.1 scores and prostate volumes were created and validated on internal and external patients. Both models were compared against two previously published MRI-based algorithms for csPCa using area under the receiver operating characteristic curve (AUC) and decision curve analysis.

RESULTS

A total of 1319 patients across internal and external cohorts were included. Our 'MRI Added' model demonstrated significantly improved discriminative ability (AUC 0.88, AUC 0.79) compared to our 'Clinical Baseline' model (AUC 0.75, AUC 0.68) (P < 0.001). The 'MRI Added' model also showed higher net benefits across various clinical threshold probabilities and compared to a 'biopsy all' approach, it reduced unnecessary biopsies (defined as biopsies without Gleason Grade Group ≥2 csPCa) by 27% in the internal cohort and 10% in the external cohort at a risk threshold of 25%. However, there was no significant difference in predictive ability and reduction in unnecessary biopsies between our model and comparative ones developed for PI-RADS v2 and v1.

CONCLUSION

Our PI-RADS v2.1-based mpMRI model significantly enhances csPCa prediction, outperforming the traditional clinical model in accuracy and reduction of unnecessary biopsies. It proves promising across diverse patient populations, establishing an updated, integrated approach for detection and management of prostate cancer.

摘要

目的

开发并验证一种基于前列腺影像报告和数据系统(PI-RADS)v2.1的预测模型,用于诊断临床显著前列腺癌(csPCa),整合临床和多参数磁共振成像(mpMRI)数据,并将其性能与现有模型进行比较。

患者与方法

我们回顾性分析了2019年4月至2023年12月期间在我们机构接受使用PI-RADS v2.1评分系统进行前瞻性mpMRI评估和活检的患者数据。创建了一个使用患者人口统计学和实验室结果的“临床基线”模型以及一个额外纳入PI-RADS v2.1评分和前列腺体积的“MRI增强”模型,并在内部和外部患者中进行验证。使用受试者操作特征曲线下面积(AUC)和决策曲线分析,将这两个模型与之前发表的两种基于MRI的csPCa算法进行比较。

结果

共纳入了内部和外部队列的1319名患者。与我们的“临床基线”模型(AUC 0.75,AUC 0.68)相比,我们的“MRI增强”模型显示出显著提高的判别能力(AUC 0.88,AUC 0.79)(P < 0.001)。“MRI增强”模型在各种临床阈值概率下也显示出更高的净效益,与“全部活检”方法相比,在25%的风险阈值下,内部队列中不必要活检(定义为没有Gleason分级组≥2的csPCa的活检)减少了27%,外部队列中减少了10%。然而,我们的模型与为PI-RADS v2和v1开发的比较模型在预测能力和减少不必要活检方面没有显著差异。

结论

我们基于PI-RADS v2.1的mpMRI模型显著增强了csPCa预测,在准确性和减少不必要活检方面优于传统临床模型。它在不同患者群体中显示出前景,为前列腺癌的检测和管理建立了一种更新的综合方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbe1/11975180/2bccc9e5d3db/BJU-135-751-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验