Suppr超能文献

Discodermolide对微管稳定作用的结构基础

Structural Basis of Microtubule Stabilization by Discodermolide.

作者信息

Prota Andrea E, Bargsten Katja, Redondo-Horcajo Mariano, Smith Amos B, Yang Chia-Ping H, McDaid Hayley M, Paterson Ian, Horwitz Susan B, Fernando Díaz José, Steinmetz Michel O

机构信息

Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, OFLC/111, 5232, Villigen PSI, Switzerland.

Current address: Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.

出版信息

Chembiochem. 2017 May 18;18(10):905-909. doi: 10.1002/cbic.201600696. Epub 2017 Mar 27.

Abstract

Microtubule-stabilizing agents (MSAs) are widely used in chemotherapy. Using X-ray crystallography we elucidated the detailed binding modes of two potent MSAs, (+)-discodermolide (DDM) and the DDM-paclitaxel hybrid KS-1-199-32, in the taxane pocket of β-tubulin. The two compounds bind in a very similar hairpin conformation, as previously observed in solution. However, they stabilize the M-loop of β-tubulin differently: KS-1-199-32 induces an M-loop helical conformation that is not observed for DDM. In the context of the microtubule structure, both MSAs connect the β-tubulin helices H6 and H7 and loop S9-S10 with the M-loop. This is similar to the structural effects elicited by epothilone A, but distinct from paclitaxel. Together, our data reveal differential binding mechanisms of DDM and KS-1-199-32 on tubulin.

摘要

微管稳定剂(MSAs)在化疗中被广泛应用。通过X射线晶体学,我们阐明了两种强效微管稳定剂,(+)-盘状二萜内酯(DDM)和DDM-紫杉醇杂合物KS-1-199-32,在β-微管蛋白紫杉烷口袋中的详细结合模式。这两种化合物以非常相似的发夹构象结合,正如之前在溶液中观察到的那样。然而,它们对β-微管蛋白M环的稳定作用不同:KS-1-199-32诱导出一种DDM未观察到的M环螺旋构象。在微管结构的背景下,两种微管稳定剂都将β-微管蛋白螺旋H6和H7以及环S9-S10与M环连接起来。这与埃坡霉素A引发的结构效应相似,但与紫杉醇不同。总之,我们的数据揭示了DDM和KS-1-199-32在微管蛋白上的不同结合机制。

相似文献

1
Structural Basis of Microtubule Stabilization by Discodermolide.
Chembiochem. 2017 May 18;18(10):905-909. doi: 10.1002/cbic.201600696. Epub 2017 Mar 27.
5
Structural Refinement of the Tubulin Ligand (+)-Discodermolide to Attenuate Chemotherapy-Mediated Senescence.
Mol Pharmacol. 2020 Aug;98(2):156-167. doi: 10.1124/mol.119.117457. Epub 2020 Jun 26.
6
Molecular mechanism of action of microtubule-stabilizing anticancer agents.
Science. 2013 Feb 1;339(6119):587-90. doi: 10.1126/science.1230582. Epub 2013 Jan 3.
9
Cyclostreptin binds covalently to microtubule pores and lumenal taxoid binding sites.
Nat Chem Biol. 2007 Feb;3(2):117-25. doi: 10.1038/nchembio853. Epub 2007 Jan 7.
10
Structural basis of microtubule stabilization by laulimalide and peloruside A.
Angew Chem Int Ed Engl. 2014 Feb 3;53(6):1621-5. doi: 10.1002/anie.201307749. Epub 2014 Jan 27.

引用本文的文献

1
Synthesis of Epoxyoxirenes: Phytotoxic Activity and Enzymatic Target Identification.
Plants (Basel). 2025 Jun 24;14(13):1933. doi: 10.3390/plants14131933.
2
Exploring tubulin-paclitaxel binding modes through extensive molecular dynamics simulations.
Sci Rep. 2025 Mar 11;15(1):8378. doi: 10.1038/s41598-025-92805-z.
4
The tubulin database: Linking mutations, modifications, ligands and local interactions.
PLoS One. 2023 Dec 8;18(12):e0295279. doi: 10.1371/journal.pone.0295279. eCollection 2023.
5
Structural basis of microtubule depolymerization by the kinesin-like activity of HIV-1 Rev.
Structure. 2023 Oct 5;31(10):1233-1246.e5. doi: 10.1016/j.str.2023.07.009. Epub 2023 Aug 11.
6
Structural insight into the stabilization of microtubules by taxanes.
Elife. 2023 Mar 6;12:e84791. doi: 10.7554/eLife.84791.
7
Computational Approaches to the Rational Design of Tubulin-Targeting Agents.
Biomolecules. 2023 Feb 2;13(2):285. doi: 10.3390/biom13020285.
8
Utilization of Photoaffinity Labeling to Investigate Binding of Microtubule Stabilizing Agents to P-Glycoprotein and β-Tubulin.
J Nat Prod. 2022 Mar 25;85(3):720-728. doi: 10.1021/acs.jnatprod.2c00106. Epub 2022 Mar 3.
9
Structural Refinement of the Tubulin Ligand (+)-Discodermolide to Attenuate Chemotherapy-Mediated Senescence.
Mol Pharmacol. 2020 Aug;98(2):156-167. doi: 10.1124/mol.119.117457. Epub 2020 Jun 26.
10
Targeting and extending the eukaryotic druggable genome with natural products: cytoskeletal targets of natural products.
Nat Prod Rep. 2020 May 1;37(5):634-652. doi: 10.1039/c9np00053d. Epub 2019 Nov 25.

本文引用的文献

2
Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins.
Cell. 2015 Aug 13;162(4):849-59. doi: 10.1016/j.cell.2015.07.012. Epub 2015 Jul 30.
4
Structural basis of tubulin tyrosination by tubulin tyrosine ligase.
J Cell Biol. 2013 Feb 4;200(3):259-70. doi: 10.1083/jcb.201211017. Epub 2013 Jan 28.
5
Molecular mechanism of action of microtubule-stabilizing anticancer agents.
Science. 2013 Feb 1;339(6119):587-90. doi: 10.1126/science.1230582. Epub 2013 Jan 3.
7
Design and synthesis of (+)-discodermolide-paclitaxel hybrids leading to enhanced biological activity.
J Med Chem. 2011 Sep 22;54(18):6319-27. doi: 10.1021/jm200692n. Epub 2011 Aug 26.
9
(+)-Discodermolide: Total Synthesis, Construction of Novel Analogues, and Biological Evaluation.
Tetrahedron. 2007 Jan 7;64(2):261-298. doi: 10.1016/j.tet.2007.10.039.
10
Microtubule-binding agents: a dynamic field of cancer therapeutics.
Nat Rev Drug Discov. 2010 Oct;9(10):790-803. doi: 10.1038/nrd3253.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验