Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI, Switzerland.
Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
Elife. 2023 Mar 6;12:e84791. doi: 10.7554/eLife.84791.
Paclitaxel (Taxol) is a taxane and a chemotherapeutic drug that stabilizes microtubules. While the interaction of paclitaxel with microtubules is well described, the lack of high-resolution structural information on a tubulin-taxane complex precludes a comprehensive description of the binding determinants that affect its mechanism of action. Here, we solved the crystal structure of baccatin III the core moiety of paclitaxel-tubulin complex at 1.9 Å resolution. Based on this information, we engineered taxanes with modified C13 side chains, solved their crystal structures in complex with tubulin, and analyzed their effects on microtubules (X-ray fiber diffraction), along with those of paclitaxel, docetaxel, and baccatin III. Further comparison of high-resolution structures and microtubules' diffractions with the apo forms and molecular dynamics approaches allowed us to understand the consequences of taxane binding to tubulin in solution and under assembled conditions. The results sheds light on three main mechanistic questions: (1) taxanes bind better to microtubules than to tubulin because tubulin assembly is linked to a βM-loopconformational reorganization (otherwise occludes the access to the taxane site) and, bulky C13 side chains preferentially recognize the assembled conformational state; (2) the occupancy of the taxane site has no influence on the straightness of tubulin protofilaments and; (3) longitudinal expansion of the microtubule lattices arises from the accommodation of the taxane core within the site, a process that is no related to the microtubule stabilization (baccatin III is biochemically inactive). In conclusion, our combined experimental and computational approach allowed us to describe the tubulin-taxane interaction in atomic detail and assess the structural determinants for binding.
紫杉醇(Taxol)是一种紫杉烷类和化疗药物,可稳定微管。虽然紫杉醇与微管的相互作用已有很好的描述,但由于缺乏高分辨率的微管蛋白-紫杉烷复合物结构信息,无法全面描述影响其作用机制的结合决定因素。在这里,我们以 1.9Å 的分辨率解决了紫杉醇-微管蛋白复合物的骨干部分巴卡丁 III 的晶体结构。基于此信息,我们对 C13 侧链进行了修饰的紫杉烷进行了工程设计,解决了它们与微管蛋白形成复合物的晶体结构,并分析了它们对微管的影响(X 射线纤维衍射),以及紫杉醇、多西他赛和巴卡丁 III 的影响。与 apo 形式和分子动力学方法的高分辨率结构和微管衍射的进一步比较使我们能够了解紫杉烷在溶液中和组装条件下与微管结合的后果。结果阐明了三个主要的机制问题:(1)与微管相比,紫杉烷与微管蛋白的结合更好,因为微管蛋白的组装与βM-环构象重排有关(否则会阻碍紫杉烷结合位点的进入),并且较大的 C13 侧链优先识别组装的构象状态;(2)紫杉烷结合位点的占有率对微管蛋白原丝的直线度没有影响;(3)微管晶格的纵向扩展是由于 taxane 核心在该位点内的容纳,该过程与微管的稳定化无关(巴卡丁 III 在生化上是无活性的)。总之,我们的实验和计算相结合的方法使我们能够详细描述微管蛋白-紫杉烷相互作用,并评估结合的结构决定因素。