Suppr超能文献

具有抑制性中枢和突触可塑性的神经网络中的同步和长时间记忆。

Synchronization and long-time memory in neural networks with inhibitory hubs and synaptic plasticity.

机构信息

Dipartimento di Fisica e Scienza della Terra, Università di Parma, via G.P. Usberti, 7/A-43124 Parma, Italy.

INFN, Gruppo Collegato di Parma, via G.P. Usberti, 7/A-43124 Parma, Italy.

出版信息

Phys Rev E. 2017 Jan;95(1-1):012308. doi: 10.1103/PhysRevE.95.012308. Epub 2017 Jan 10.

Abstract

We investigate the dynamical role of inhibitory and highly connected nodes (hub) in synchronization and input processing of leaky-integrate-and-fire neural networks with short term synaptic plasticity. We take advantage of a heterogeneous mean-field approximation to encode the role of network structure and we tune the fraction of inhibitory neurons f_{I} and their connectivity level to investigate the cooperation between hub features and inhibition. We show that, depending on f_{I}, highly connected inhibitory nodes strongly drive the synchronization properties of the overall network through dynamical transitions from synchronous to asynchronous regimes. Furthermore, a metastable regime with long memory of external inputs emerges for a specific fraction of hub inhibitory neurons, underlining the role of inhibition and connectivity also for input processing in neural networks.

摘要

我们研究了具有短期突触可塑性的漏电积分和放电神经网络的同步和输入处理中抑制性和高度连接节点(中枢)的动态作用。我们利用异质平均场近似来编码网络结构的作用,并调整抑制性神经元的分数 f_{I}及其连接水平,以研究中枢特征与抑制之间的合作。我们表明,取决于 f_{I},高度连接的抑制性节点通过从同步到异步状态的动态转变,强烈驱动整个网络的同步特性。此外,在中枢抑制性神经元的特定分数下,出现了具有外部输入长记忆的亚稳状态,突出了抑制和连接在神经网络输入处理中的作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验