James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
Engineering and the Environment, University of Southampton, Highfield, Southampton S017 1BJ, United Kingdom.
Phys Rev E. 2017 Jan;95(1-1):012603. doi: 10.1103/PhysRevE.95.012603. Epub 2017 Jan 9.
Unlike dry granular materials, a dense granular suspension like cornstarch in water can strongly resist extensional flows. At low extension rates, such a suspension behaves like a viscous fluid, but rapid extension results in a response where stresses far exceed the predictions of lubrication hydrodynamics and capillarity. To understand this remarkable mechanical response, we experimentally measure the normal force imparted by a large bulk of the suspension on a plate moving vertically upward at a controlled velocity. We observe that, above a velocity threshold, the peak force increases by orders of magnitude. Using fast ultrasound imaging we map out the local velocity profiles inside the suspension, which reveal the formation of a growing jammed region under rapid extension. This region interacts with the rigid boundaries of the container through strong velocity gradients, suggesting a direct connection to the recently proposed shear-jamming mechanism.
与干燥的颗粒材料不同,像水中的玉米淀粉这样的密集颗粒悬浮液可以强烈抵抗拉伸流动。在低拉伸速率下,这样的悬浮液表现得像粘性流体,但快速拉伸会导致应力远远超过润滑流体动力学和毛细作用的预测。为了理解这种显著的力学响应,我们通过实验测量了大量悬浮液对以受控速度向上垂直移动的板施加的法向力。我们观察到,在速度阈值以上,峰值力会增加几个数量级。使用快速超声成像,我们绘制了悬浮液内部的局部速度分布,这揭示了在快速拉伸下形成一个不断增大的堵塞区域。该区域通过强烈的速度梯度与容器的刚性边界相互作用,这表明与最近提出的剪切堵塞机制存在直接联系。