Suppr超能文献

大肠杆菌COG1738成员YhhQ参与7-氰基脱氮鸟嘌呤(preQ₀)的转运。

The Escherichia coli COG1738 Member YhhQ Is Involved in 7-Cyanodeazaguanine (preQ₀) Transport.

作者信息

Zallot Rémi, Yuan Yifeng, de Crécy-Lagard Valérie

机构信息

Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.

出版信息

Biomolecules. 2017 Feb 8;7(1):12. doi: 10.3390/biom7010012.

Abstract

Queuosine (Q) is a complex modification of the wobble base in tRNAs with GUN anticodons. The full Q biosynthesis pathway has been elucidated in . FolE, QueD, QueE and QueC are involved in the conversion of guanosine triphosphate (GTP) to 7-cyano-7-deazaguanine (preQ₀), an intermediate of increasing interest for its central role in tRNA and DNA modification and secondary metabolism. QueF then reduces preQ₀ to 7-aminomethyl-7-deazaguanine (preQ₁). PreQ₁ is inserted into tRNAs by tRNA guanine transglycosylase (TGT). The inserted base preQ₁ is finally matured to Q by two additional steps involving QueA and QueG or QueH. Most Eubacteria harbor the full set of Q synthesis genes and are predicted to synthesize Q de novo. However, some bacteria only encode enzymes involved in the second half of the pathway downstream of preQ₀ synthesis, including the signature enzyme TGT. Different patterns of distribution of the , , and or genes are observed, suggesting preQ₀, preQ₁ or even the queuine base being salvaged in specific organisms. Such salvage pathways require the existence of specific 7-deazapurine transporters that have yet to be identified. The COG1738 family was identified as a candidate for a missing preQ₀/preQ₁ transporter in prokaryotes, by comparative genomics analyses. The existence of Q precursor salvage was confirmed for the first time in bacteria, in vivo, through an indirect assay. The involvement of the COG1738 in salvage of a Q precursor was experimentally validated in , where it was shown that the COG1738 family member YhhQ is essential for preQ₀ transport.

摘要

queuosine(Q)是对带有GUN反密码子的tRNA中摆动碱基的一种复杂修饰。完整的Q生物合成途径已在……中阐明。FolE、QueD、QueE和QueC参与将鸟苷三磷酸(GTP)转化为7-氰基-7-脱氮鸟嘌呤(preQ₀),preQ₀作为中间体因其在tRNA和DNA修饰以及次级代谢中的核心作用而越来越受到关注。然后QueF将preQ₀还原为7-氨甲基-7-脱氮鸟嘌呤(preQ₁)。preQ₁通过tRNA鸟嘌呤转糖基酶(TGT)插入到tRNA中。插入的碱基preQ₁最终通过涉及QueA和QueG或QueH的另外两个步骤成熟为Q。大多数真细菌拥有全套Q合成基因,并预计能从头合成Q。然而,一些细菌只编码参与preQ₀合成下游途径后半部分的酶,包括标志性酶TGT。观察到queA、queD、queE和queG或queH基因的不同分布模式,表明preQ₀、preQ₁甚至queuosine碱基在特定生物体中是被挽救利用的。这种挽救途径需要存在尚未被鉴定的特定7-脱氮嘌呤转运蛋白。通过比较基因组学分析,COG1738家族被确定为原核生物中缺失的preQ₀/preQ₁转运蛋白的候选者。通过间接测定首次在细菌体内证实了Q前体挽救的存在。在……中通过实验验证了COG1738参与Q前体的挽救,结果表明COG1738家族成员YhhQ对preQ₀的转运至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8843/5372724/7ba8e0cd0e32/biomolecules-07-00012-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验