Suppr超能文献

用于确定成像亚可见颗粒边界的可变阈值法

Variable Threshold Method for Determining the Boundaries of Imaged Subvisible Particles.

作者信息

Cavicchi Richard E, Collett Cayla, Telikepalli Srivalli, Hu Zhishang, Carrier Michael, Ripple Dean C

机构信息

Bioprocess Measurements Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899.

West Virginia Wesleyan College, Buckhannon, West Virginia 26201.

出版信息

J Pharm Sci. 2017 Jun;106(6):1499-1507. doi: 10.1016/j.xphs.2017.02.005. Epub 2017 Feb 15.

Abstract

An accurate assessment of particle characteristics and concentrations in pharmaceutical products by flow imaging requires accurate particle sizing and morphological analysis. Analysis of images begins with the definition of particle boundaries. Commonly a single threshold defines the level for a pixel in the image to be included in the detection of particles, but depending on the threshold level, this results in either missing translucent particles or oversizing of less transparent particles due to the halos and gradients in intensity near the particle boundaries. We have developed an imaging analysis algorithm that sets the threshold for a particle based on the maximum gray value of the particle. We show that this results in tighter boundaries for particles with high contrast, while conserving the number of highly translucent particles detected. The method is implemented as a plugin for FIJI, an open-source image analysis software. The method is tested for calibration beads in water and glycerol/water solutions, a suspension of microfabricated rods, and stir-stressed aggregates made from IgG. The result is that appropriate thresholds are automatically set for solutions with a range of particle properties, and that improved boundaries will allow for more accurate sizing results and potentially improved particle classification studies.

摘要

通过流动成像准确评估药品中的颗粒特性和浓度需要准确的颗粒尺寸测量和形态分析。图像分析始于颗粒边界的定义。通常,单个阈值定义了图像中像素被纳入颗粒检测的水平,但根据阈值水平,这会导致要么遗漏半透明颗粒,要么由于颗粒边界附近强度的光晕和梯度而使透明度较低的颗粒尺寸过大。我们开发了一种成像分析算法,该算法基于颗粒的最大灰度值为颗粒设置阈值。我们表明,这会为高对比度颗粒产生更紧密的边界,同时保留检测到的高度半透明颗粒的数量。该方法作为开源图像分析软件FIJI的插件实现。该方法针对水中和甘油/水溶液中的校准珠、微制造棒的悬浮液以及由IgG制成的搅拌应力聚集体进行了测试。结果是,对于具有一系列颗粒特性的溶液会自动设置合适的阈值,并且改进的边界将允许获得更准确的尺寸测量结果,并可能改善颗粒分类研究。

相似文献

1
Variable Threshold Method for Determining the Boundaries of Imaged Subvisible Particles.
J Pharm Sci. 2017 Jun;106(6):1499-1507. doi: 10.1016/j.xphs.2017.02.005. Epub 2017 Feb 15.
2
Unmasking translucent protein particles by improved micro-flow imaging™ algorithms.
J Pharm Sci. 2014 Jan;103(1):107-14. doi: 10.1002/jps.23786. Epub 2013 Nov 26.
3
Calculating the mass of subvisible protein particles with improved accuracy using microflow imaging data.
J Pharm Sci. 2015 Feb;104(2):536-47. doi: 10.1002/jps.24156. Epub 2014 Oct 9.
4
Application of one-class classification using deep learning technique improves the classification of subvisible particles.
J Pharm Sci. 2025 Feb;114(2):1117-1124. doi: 10.1016/j.xphs.2024.11.023. Epub 2024 Nov 29.
7
Particle shape effects on subvisible particle sizing measurements.
J Pharm Sci. 2015 Mar;104(3):971-87. doi: 10.1002/jps.24263. Epub 2014 Dec 1.
9
Measurement of Average Aggregate Density by Sedimentation and Brownian Motion Analysis.
J Pharm Sci. 2018 May;107(5):1304-1312. doi: 10.1016/j.xphs.2018.01.013. Epub 2018 Feb 1.
10
Label-free flow cytometry analysis of subvisible aggregates in liquid IgG1 antibody formulations.
J Pharm Sci. 2014 Jan;103(1):90-9. doi: 10.1002/jps.23782. Epub 2013 Nov 11.

引用本文的文献

1
Optimized network inference for immune diseased single cells.
Front Immunol. 2025 Jul 24;16:1597862. doi: 10.3389/fimmu.2025.1597862. eCollection 2025.
2
3
Measurement of Average Aggregate Density by Sedimentation and Brownian Motion Analysis.
J Pharm Sci. 2018 May;107(5):1304-1312. doi: 10.1016/j.xphs.2018.01.013. Epub 2018 Feb 1.

本文引用的文献

2
The Use of Index-Matched Beads in Optical Particle Counters.
J Res Natl Inst Stand Technol. 2014 Jan 8;119:674-82. doi: 10.6028/jres.119.029. eCollection 2014.
3
Correcting the Relative Bias of Light Obscuration and Flow Imaging Particle Counters.
Pharm Res. 2016 Mar;33(3):653-72. doi: 10.1007/s11095-015-1817-9. Epub 2015 Nov 10.
5
Advanced methods of microscope control using μManager software.
J Biol Methods. 2014;1(2). doi: 10.14440/jbm.2014.36.
6
Particle shape effects on subvisible particle sizing measurements.
J Pharm Sci. 2015 Mar;104(3):971-87. doi: 10.1002/jps.24263. Epub 2014 Dec 1.
7
An interlaboratory comparison of sizing and counting of subvisible particles mimicking protein aggregates.
J Pharm Sci. 2015 Feb;104(2):666-77. doi: 10.1002/jps.24287. Epub 2014 Nov 24.
8
Unmasking translucent protein particles by improved micro-flow imaging™ algorithms.
J Pharm Sci. 2014 Jan;103(1):107-14. doi: 10.1002/jps.23786. Epub 2013 Nov 26.
9
Flow imaging microscopy for protein particle analysis--a comparative evaluation of four different analytical instruments.
AAPS J. 2013 Oct;15(4):1200-11. doi: 10.1208/s12248-013-9522-2. Epub 2013 Aug 31.
10
How subvisible particles become invisible-relevance of the refractive index for protein particle analysis.
J Pharm Sci. 2013 May;102(5):1434-46. doi: 10.1002/jps.23479. Epub 2013 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验