Ivanyuk Anton, Livio Françoise, Biollaz Jérôme, Buclin Thierry
Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
Clin Pharmacokinet. 2017 Aug;56(8):825-892. doi: 10.1007/s40262-017-0506-8.
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
近端肾小管中的转运体参与多种药物的处置。此外,在过去几十年中,肾小管分泌的分子机制已逐渐阐明。有机阴离子倾向于由肾小管细胞基底外侧的转运蛋白OAT1、OAT3和OATP4C1分泌,以及由顶端的多药耐药蛋白(MRP)2、MRP4、OATP1A2和乳腺癌耐药蛋白(BCRP)分泌。有机阳离子由基底外侧的有机阳离子转运体(OCT)2分泌,以及由顶端的多药和有毒化合物外排(MATE)蛋白MATE1、MATE2/2-K、P-糖蛋白、有机阳离子和肉碱转运体(OCTN)1和OCTN2分泌。显著的药物-药物相互作用(DDIs)可能会影响这些转运体中的任何一种,改变清除率,进而影响底物药物的疗效和/或毒性。基底外侧转运体水平的相互作用通常会降低受害者药物的清除率,导致更高的全身暴露。顶端水平的相互作用也会降低药物清除率,但由于细胞内蓄积,可能与更高的肾毒性有关。虽然肾小球滤过在药物处置中的重要性在临床医生中已得到广泛认可,但涉及肾转运体的DDIs却鲜为人知。本综述总结了目前关于这些转运体在药物治疗中的作用、定量重要性和临床相关性的知识。它提出了一种基于底物-抑制剂关联的方法,用于预测潜在的基于肾小管的DDIs并预防其不良后果。我们提供了与肾表达转运体已知药物相互作用的综合列表。虽然这些相互作用中的许多临床后果有限,但一些涉及高风险药物(如甲氨蝶呤)的相互作用肯定值得处方医生关注。