Suppr超能文献

使用二次判别分析方法的多样性增量预测抗菌肽。

Predicting Antimicrobial Peptides by Using Increment of Diversity with Quadratic Discriminant Analysis Method.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2019 Jul-Aug;16(4):1309-1312. doi: 10.1109/TCBB.2017.2669302. Epub 2017 Feb 14.

Abstract

Antimicrobial peptides are crucial components of the innate host defense system of most living organisms and promising candidates for antimicrobial agents. Accurate classification of antimicrobial peptides will be helpful to the discovery of new therapeutic targets. In this work, the Increment of Diversity with Quadratic Discriminant analysis (IDQD) was presented to classify antifungal and antibacterial peptides based on primary sequence information. In the jackknife test, the proposed IDQD model yields an accuracy of 86.02 percent with the sensitivity of 74.31 percent and specificity of 92.79 percent for identifying antimicrobial peptides, which is superior to other state-of-the-art methods. This result suggests that the proposed IDQD model can be efficiently used to antimicrobial peptide classification.

摘要

抗菌肽是大多数生物先天宿主防御系统的重要组成部分,也是有前途的抗菌剂候选物。对抗菌肽进行准确分类将有助于发现新的治疗靶点。在这项工作中,提出了基于二次判别分析的多样性增量(IDQD)方法,用于根据一级序列信息对抗真菌和抗菌肽进行分类。在 Jackknife 测试中,所提出的 IDQD 模型对识别抗菌肽的准确性为 86.02%,灵敏度为 74.31%,特异性为 92.79%,优于其他最先进的方法。这一结果表明,所提出的 IDQD 模型可以有效地用于抗菌肽分类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验