Suppr超能文献

艾滋病监测系统中的数据挖掘:在葡萄牙数据中的应用

Data Mining in HIV-AIDS Surveillance System : Application to Portuguese Data.

作者信息

Oliveira Alexandra, Faria Brígida Mónica, Gaio A Rita, Reis Luís Paulo

机构信息

Center of Mathematics, University of Porto, Porto, Portugal.

Artificial Intelligence and Computer Science Laboratory, LIACC, Porto, Portugal.

出版信息

J Med Syst. 2017 Apr;41(4):51. doi: 10.1007/s10916-017-0697-4. Epub 2017 Feb 18.

Abstract

The Human Immunodeficiency Virus (HIV) is an infectious agent that attacks the immune system cells. Without a strong immune system, the body becomes very susceptible to serious life threatening opportunistic diseases. In spite of the great progresses on medication and prevention over the last years, HIV infection continues to be a major global public health issue, having claimed more than 36 million lives over the last 35 years since the recognition of the disease. Monitoring, through registries, of HIV-AIDS cases is vital to assess general health care needs and to support long-term health-policy control planning. Surveillance systems are therefore established in almost all developed countries. Typically, this is a complex system depending on several stakeholders, such as health care providers, the general population and laboratories, which challenges an efficient and effective reporting of diagnosed cases. One issue that often arises is the administrative delay in reports of diagnosed cases. This paper aims to identify the main factors influencing reporting delays of HIV-AIDS cases within the portuguese surveillance system. The used methodologies included multilayer artificial neural networks (MLP), naive bayesian classifiers (NB), support vector machines (SVM) and the k-nearest neighbor algorithm (KNN). The highest classification accuracy, precision and recall were obtained for MLP and the results suggested homogeneous administrative and clinical practices within the reporting process. Guidelines for reductions of the delays should therefore be developed nationwise and transversally to all stakeholders.

摘要

人类免疫缺陷病毒(HIV)是一种攻击免疫系统细胞的传染因子。如果没有强大的免疫系统,身体就会极易感染严重威胁生命的机会性疾病。尽管在过去几年里,药物治疗和预防方面取得了巨大进展,但HIV感染仍然是一个重大的全球公共卫生问题,自该疾病被发现以来的35年里,已有超过3600万人丧生。通过登记系统监测HIV/AIDS病例对于评估总体医疗保健需求以及支持长期卫生政策控制规划至关重要。因此,几乎所有发达国家都建立了监测系统。通常,这是一个依赖于多个利益相关者的复杂系统,如医疗保健提供者、普通民众和实验室,这对高效且有效地报告确诊病例构成了挑战。经常出现的一个问题是确诊病例报告中的行政延迟。本文旨在确定影响葡萄牙监测系统内HIV/AIDS病例报告延迟的主要因素。所使用的方法包括多层人工神经网络(MLP)、朴素贝叶斯分类器(NB)、支持向量机(SVM)和k近邻算法(KNN)。MLP获得了最高的分类准确率、精确率和召回率,结果表明报告过程中行政和临床实践具有同质性。因此,应在全国范围内并针对所有利益相关者制定减少延迟的指导方针。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验