Pagano M, Tu X M, De Gruttola V, MaWhinney S
Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115.
Biometrics. 1994 Dec;50(4):1203-14.
AIDS surveillance provides a vital source of information for health departments to assess the AIDS epidemic and to plan for future health-care needs. However, the use of surveillance data requires proper adjustments for the underreporting of AIDS cases caused by the delay in reporting diagnosed AIDS cases to the surveillance system. The statistical problem of adjusting for this underreporting concerns making inferences about an unobservable random sample of which only a portion is observed in a chronologic time interval defined by the analysis. Most regression methods for making inferences using right-truncated data employ a reverse-time hazard function, which requires that the observed data be transformed so that methods for left-truncated data can be applied. In this paper, we discuss fitting regression models to data that can be truncated and even censored in arbitrary intervals. The proposed methodology was applied to the national AIDS surveillance data provided by the Centers for Disease Control to analyze the trend of delays over chronologic time and variation among different geographic regions as well as across risk groups.
艾滋病监测为卫生部门评估艾滋病疫情及规划未来医疗需求提供了至关重要的信息来源。然而,使用监测数据时,需要对因向监测系统报告确诊艾滋病病例存在延迟而导致的病例漏报情况进行适当调整。针对这种漏报情况进行调整的统计问题涉及对一个不可观测的随机样本进行推断,在分析所定义的按时间顺序排列的时间间隔内,该样本中只有一部分是可观测的。大多数使用右删失数据进行推断的回归方法采用逆时风险函数,这要求对观测数据进行变换,以便能够应用左删失数据的方法。在本文中,我们讨论如何将回归模型拟合到可在任意时间间隔内被截断甚至被删失的数据上。所提出的方法应用于疾病控制中心提供的全国艾滋病监测数据,以分析随时间推移的延迟趋势以及不同地理区域和不同风险群体之间的差异。