Suppr超能文献

明确建模 siRNA 依赖的靶上和靶外抑制作用可提高筛选结果的解读。

Explicit Modeling of siRNA-Dependent On- and Off-Target Repression Improves the Interpretation of Screening Results.

机构信息

Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.

Developmental & Molecular Pathways, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA.

出版信息

Cell Syst. 2017 Feb 22;4(2):182-193.e4. doi: 10.1016/j.cels.2017.01.011. Epub 2017 Feb 15.

Abstract

RNAi is broadly used to map gene regulatory networks, but the identification of genes that are responsible for the observed phenotypes is challenging, as small interfering RNAs (siRNAs) simultaneously downregulate the intended on targets and many partially complementary off targets. Additionally, the scarcity of publicly available control datasets hinders the development and comparative evaluation of computational methods for analyzing the data. Here, we introduce PheLiM (https://github.com/andreariba/PheLiM), a method that uses predictions of siRNA on- and off-target downregulation to infer gene-specific contributions to phenotypes. To assess the performance of PheLiM, we carried out siRNA- and CRISPR/Cas9-based genome-wide screening of two well-characterized pathways, bone morphogenetic protein (BMP) and nuclear factor κB (NF-κB), and we reanalyzed publicly available siRNA screens. We demonstrate that PheLiM has the overall highest accuracy and most reproducible results compared to other available methods. PheLiM can accommodate various methods for predicting siRNA off targets and is broadly applicable to the identification of genes underlying complex phenotypes.

摘要

RNAi 被广泛用于绘制基因调控网络,但识别导致观察到的表型的基因具有挑战性,因为小干扰 RNA (siRNA) 同时下调预期的靶基因和许多部分互补的脱靶基因。此外,公开可用的对照数据集的稀缺性阻碍了用于分析数据的计算方法的开发和比较评估。在这里,我们介绍了 PheLiM(https://github.com/andreariba/PheLiM),这是一种使用 siRNA 靶基因和脱靶基因下调的预测来推断基因对表型特异性贡献的方法。为了评估 PheLiM 的性能,我们对两个经过充分研究的途径(骨形态发生蛋白 (BMP) 和核因子 κB (NF-κB))进行了基于 siRNA 和 CRISPR/Cas9 的全基因组筛选,并重新分析了公开的 siRNA 筛选。我们证明,与其他可用方法相比,PheLiM 的整体准确性最高,结果最可重复。PheLiM 可以适应各种预测 siRNA 脱靶基因的方法,并且广泛适用于鉴定复杂表型背后的基因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验