Suppr超能文献

基于动态网络建模的定向网络发现

Directed network discovery with dynamic network modelling.

作者信息

Anzellotti Stefano, Kliemann Dorit, Jacoby Nir, Saxe Rebecca

机构信息

MIT, United States.

MIT, United States.

出版信息

Neuropsychologia. 2017 May;99:1-11. doi: 10.1016/j.neuropsychologia.2017.02.006. Epub 2017 Feb 16.

Abstract

Cognitive tasks recruit multiple brain regions. Understanding how these regions influence each other (the network structure) is an important step to characterize the neural basis of cognitive processes. Often, limited evidence is available to restrict the range of hypotheses a priori, and techniques that sift efficiently through a large number of possible network structures are needed (network discovery). This article introduces a novel modelling technique for network discovery (Dynamic Network Modelling or DNM) that builds on ideas from Granger Causality and Dynamic Causal Modelling introducing three key changes: (1) efficient network discovery is implemented with statistical tests on the consistency of model parameters across participants, (2) the tests take into account the magnitude and sign of each influence, and (3) variance explained in independent data is used as an absolute (rather than relative) measure of the quality of the network model. In this article, we outline the functioning of DNM, we validate DNM in simulated data for which the ground truth is known, and we report an example of its application to the investigation of influences between regions during emotion recognition, revealing top-down influences from brain regions encoding abstract representations of emotions (medial prefrontal cortex and superior temporal sulcus) onto regions engaged in the perceptual analysis of facial expressions (occipital face area and fusiform face area) when participants are asked to switch between reporting the emotional valence and the age of a face.

摘要

认知任务会激活多个脑区。了解这些脑区如何相互影响(即网络结构)是刻画认知过程神经基础的重要一步。通常,用于限制先验假设范围的证据有限,因此需要能够有效筛选大量可能网络结构的技术(网络发现)。本文介绍了一种用于网络发现的新型建模技术(动态网络建模或DNM),该技术基于格兰杰因果关系和动态因果建模的思想,并引入了三个关键变化:(1)通过对参与者模型参数一致性的统计检验来实现高效的网络发现;(2)检验考虑了每种影响的大小和符号;(3)独立数据中解释的方差被用作网络模型质量的绝对(而非相对)度量。在本文中,我们概述了DNM的功能,在已知真实情况的模拟数据中验证了DNM,并报告了其在情感识别过程中用于研究脑区之间影响的一个应用实例,揭示了当参与者被要求在报告面部表情的情感效价和年龄之间切换时,编码情感抽象表征的脑区(内侧前额叶皮层和颞上沟)对参与面部表情感知分析的脑区(枕叶面部区和梭状面部区)存在自上而下的影响。

相似文献

1
Directed network discovery with dynamic network modelling.
Neuropsychologia. 2017 May;99:1-11. doi: 10.1016/j.neuropsychologia.2017.02.006. Epub 2017 Feb 16.
2
Valence-Dependent Coupling of Prefrontal-Amygdala Effective Connectivity during Facial Affect Processing.
eNeuro. 2019 Jul 25;6(4). doi: 10.1523/ENEURO.0079-19.2019. Print 2019 Jul/Aug.
3
Differential recruitment of theory of mind brain network across three tasks: An independent component analysis.
Behav Brain Res. 2018 Jul 16;347:385-393. doi: 10.1016/j.bbr.2018.03.041. Epub 2018 Mar 28.
7
A network analysis of audiovisual affective speech perception.
Neuroscience. 2014 Jan 3;256:230-41. doi: 10.1016/j.neuroscience.2013.10.047. Epub 2013 Oct 30.
9
Test-retest reliability of effective connectivity in the face perception network.
Hum Brain Mapp. 2016 Feb;37(2):730-44. doi: 10.1002/hbm.23061. Epub 2015 Nov 27.
10
Hemispheric asymmetries and emotions: Evidence from effective connectivity.
Neuropsychologia. 2018 Dec;121:98-105. doi: 10.1016/j.neuropsychologia.2018.10.007. Epub 2018 Oct 21.

引用本文的文献

1
A large-scale structural and functional connectome of social mentalizing.
Neuroimage. 2021 Aug 1;236:118115. doi: 10.1016/j.neuroimage.2021.118115. Epub 2021 Apr 30.
2
Multimodal mapping of the face connectome.
Nat Hum Behav. 2020 Apr;4(4):397-411. doi: 10.1038/s41562-019-0811-3. Epub 2020 Jan 27.
3
Social Origins of Cortical Face Areas.
Trends Cogn Sci. 2018 Sep;22(9):752-763. doi: 10.1016/j.tics.2018.06.009. Epub 2018 Jul 23.
4
Mutual connectivity analysis of resting-state functional MRI data with local models.
Neuroimage. 2018 Sep;178:210-223. doi: 10.1016/j.neuroimage.2018.05.038. Epub 2018 May 17.
5
Dynamic causal modelling on infant fNIRS data: A validation study on a simultaneously recorded fNIRS-fMRI dataset.
Neuroimage. 2018 Jul 15;175:413-424. doi: 10.1016/j.neuroimage.2018.04.022. Epub 2018 Apr 12.
6
Multivariate pattern dependence.
PLoS Comput Biol. 2017 Nov 20;13(11):e1005799. doi: 10.1371/journal.pcbi.1005799. eCollection 2017 Nov.

本文引用的文献

1
Decoding task and stimulus representations in face-responsive cortex.
Cogn Neuropsychol. 2016 Oct-Dec;33(7-8):362-377. doi: 10.1080/02643294.2016.1256873. Epub 2016 Dec 15.
2
Intersubject variability and induced gamma in the visual cortex: DCM with empirical Bayes and neural fields.
Hum Brain Mapp. 2016 Dec;37(12):4597-4614. doi: 10.1002/hbm.23331. Epub 2016 Sep 4.
4
Bayesian model reduction and empirical Bayes for group (DCM) studies.
Neuroimage. 2016 Mar;128:413-431. doi: 10.1016/j.neuroimage.2015.11.015. Epub 2015 Nov 11.
5
From Parts to Identity: Invariance and Sensitivity of Face Representations to Different Face Halves.
Cereb Cortex. 2016 May;26(5):1900-9. doi: 10.1093/cercor/bhu337. Epub 2015 Jan 26.
6
A common neural code for perceived and inferred emotion.
J Neurosci. 2014 Nov 26;34(48):15997-6008. doi: 10.1523/JNEUROSCI.1676-14.2014.
7
Reworking the language network.
Trends Cogn Sci. 2014 Mar;18(3):120-6. doi: 10.1016/j.tics.2013.12.006. Epub 2014 Jan 15.
8
Explicating the face perception network with white matter connectivity.
PLoS One. 2013 Apr 22;8(4):e61611. doi: 10.1371/journal.pone.0061611. Print 2013.
9
Functional responses and structural connections of cortical areas for processing faces and voices in the superior temporal sulcus.
Neuroimage. 2013 Aug 1;76:45-56. doi: 10.1016/j.neuroimage.2013.02.064. Epub 2013 Mar 16.
10
Informational connectivity: identifying synchronized discriminability of multi-voxel patterns across the brain.
Front Hum Neurosci. 2013 Feb 7;7:15. doi: 10.3389/fnhum.2013.00015. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验