Suppr超能文献

基于动态网络建模的定向网络发现

Directed network discovery with dynamic network modelling.

作者信息

Anzellotti Stefano, Kliemann Dorit, Jacoby Nir, Saxe Rebecca

机构信息

MIT, United States.

MIT, United States.

出版信息

Neuropsychologia. 2017 May;99:1-11. doi: 10.1016/j.neuropsychologia.2017.02.006. Epub 2017 Feb 16.

Abstract

Cognitive tasks recruit multiple brain regions. Understanding how these regions influence each other (the network structure) is an important step to characterize the neural basis of cognitive processes. Often, limited evidence is available to restrict the range of hypotheses a priori, and techniques that sift efficiently through a large number of possible network structures are needed (network discovery). This article introduces a novel modelling technique for network discovery (Dynamic Network Modelling or DNM) that builds on ideas from Granger Causality and Dynamic Causal Modelling introducing three key changes: (1) efficient network discovery is implemented with statistical tests on the consistency of model parameters across participants, (2) the tests take into account the magnitude and sign of each influence, and (3) variance explained in independent data is used as an absolute (rather than relative) measure of the quality of the network model. In this article, we outline the functioning of DNM, we validate DNM in simulated data for which the ground truth is known, and we report an example of its application to the investigation of influences between regions during emotion recognition, revealing top-down influences from brain regions encoding abstract representations of emotions (medial prefrontal cortex and superior temporal sulcus) onto regions engaged in the perceptual analysis of facial expressions (occipital face area and fusiform face area) when participants are asked to switch between reporting the emotional valence and the age of a face.

摘要

认知任务会激活多个脑区。了解这些脑区如何相互影响(即网络结构)是刻画认知过程神经基础的重要一步。通常,用于限制先验假设范围的证据有限,因此需要能够有效筛选大量可能网络结构的技术(网络发现)。本文介绍了一种用于网络发现的新型建模技术(动态网络建模或DNM),该技术基于格兰杰因果关系和动态因果建模的思想,并引入了三个关键变化:(1)通过对参与者模型参数一致性的统计检验来实现高效的网络发现;(2)检验考虑了每种影响的大小和符号;(3)独立数据中解释的方差被用作网络模型质量的绝对(而非相对)度量。在本文中,我们概述了DNM的功能,在已知真实情况的模拟数据中验证了DNM,并报告了其在情感识别过程中用于研究脑区之间影响的一个应用实例,揭示了当参与者被要求在报告面部表情的情感效价和年龄之间切换时,编码情感抽象表征的脑区(内侧前额叶皮层和颞上沟)对参与面部表情感知分析的脑区(枕叶面部区和梭状面部区)存在自上而下的影响。

相似文献

1
Directed network discovery with dynamic network modelling.基于动态网络建模的定向网络发现
Neuropsychologia. 2017 May;99:1-11. doi: 10.1016/j.neuropsychologia.2017.02.006. Epub 2017 Feb 16.
7
A network analysis of audiovisual affective speech perception.听觉-视觉情感言语感知的网络分析。
Neuroscience. 2014 Jan 3;256:230-41. doi: 10.1016/j.neuroscience.2013.10.047. Epub 2013 Oct 30.
10
Hemispheric asymmetries and emotions: Evidence from effective connectivity.大脑半球偏侧化与情绪:来自有效连接的证据。
Neuropsychologia. 2018 Dec;121:98-105. doi: 10.1016/j.neuropsychologia.2018.10.007. Epub 2018 Oct 21.

引用本文的文献

1
A large-scale structural and functional connectome of social mentalizing.社会心理化的大规模结构与功能连接组
Neuroimage. 2021 Aug 1;236:118115. doi: 10.1016/j.neuroimage.2021.118115. Epub 2021 Apr 30.
2
Multimodal mapping of the face connectome.面部连接组的多模态映射。
Nat Hum Behav. 2020 Apr;4(4):397-411. doi: 10.1038/s41562-019-0811-3. Epub 2020 Jan 27.
3
Social Origins of Cortical Face Areas.皮质面部区域的社会起源。
Trends Cogn Sci. 2018 Sep;22(9):752-763. doi: 10.1016/j.tics.2018.06.009. Epub 2018 Jul 23.
6
Multivariate pattern dependence.多变量模式依赖性
PLoS Comput Biol. 2017 Nov 20;13(11):e1005799. doi: 10.1371/journal.pcbi.1005799. eCollection 2017 Nov.

本文引用的文献

1
Decoding task and stimulus representations in face-responsive cortex.面部反应性皮层中的解码任务与刺激表征
Cogn Neuropsychol. 2016 Oct-Dec;33(7-8):362-377. doi: 10.1080/02643294.2016.1256873. Epub 2016 Dec 15.
6
A common neural code for perceived and inferred emotion.一种用于感知和推断情绪的通用神经编码。
J Neurosci. 2014 Nov 26;34(48):15997-6008. doi: 10.1523/JNEUROSCI.1676-14.2014.
7
Reworking the language network.重塑语言网络。
Trends Cogn Sci. 2014 Mar;18(3):120-6. doi: 10.1016/j.tics.2013.12.006. Epub 2014 Jan 15.
8
Explicating the face perception network with white matter connectivity.用白质连接来阐释面部感知网络。
PLoS One. 2013 Apr 22;8(4):e61611. doi: 10.1371/journal.pone.0061611. Print 2013.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验