Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
Centre for Quantum Technologies, National University of Singapore, Block S15, 3 Science Drive 2, Singapore 117543, Singapore.
Sci Rep. 2017 Feb 20;7:42861. doi: 10.1038/srep42861.
Measurement-based quantum computing (MBQC) is a model of quantum computation where quantum information is coherently processed by means of projective measurements on highly entangled states. Following the introduction of MBQC, cluster states have been studied extensively both from the theoretical and experimental point of view. Indeed, the study of MBQC was catalysed by the realisation that cluster states are universal for MBQC with (X, Y)-plane and Z measurements. Here we examine the question of whether the requirement for Z measurements can be dropped while maintaining universality. We answer this question in the affirmative by showing that universality is possible in this scenario.
基于测量的量子计算(MBQC)是一种量子计算模型,其中量子信息通过对高度纠缠态进行投影测量来实现相干处理。在 MBQC 被引入之后,从理论和实验的角度对簇态进行了广泛的研究。事实上,MBQC 的研究是由这样一个事实推动的,即簇态对于具有(X,Y)平面和 Z 测量的 MBQC 是通用的。在这里,我们研究了在保持通用性的同时是否可以放弃对 Z 测量的要求。我们通过证明在这种情况下仍然可以实现通用性来回答这个问题。