Zhang Zuo-Yuan, Liu Jin-Ming
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China.
Sci Rep. 2017 Dec 19;7(1):17822. doi: 10.1038/s41598-017-18148-6.
We consider two ultracold polar symmetric top molecules coupled by dipole-dipole interaction in an external electric field with appreciable intensity gradient, serving as the physical carrier of quantum information. Each molecule is induced to undergo pendular oscillations under the strong static electric field. Based on the pendular states of polar symmetric top molecules as candidate qubits, we investigate the bipartite quantum correlations of the two polar molecular system for the thermal equilibrium states, characterized by negativity and quantum discord, and then analyze the corresponding coherence, measured by relative entropy and l norm. Furthermore, we also examine the dynamics of the entanglement and coherence of the system in the presence of intrinsic decoherence, and explore the relations of their temporal evolution with various physical system parameters for two different initial Bell states. It is found that quantum correlations and coherence of the two polar molecules in pendular states can be manipulated by adjusting appropriate reduced variables including external electric field, dipole-dipole interaction, ambient temperature and decoherence factor. Our findings could be used for molecular quantum computing based on rotational states.
我们考虑两个通过偶极-偶极相互作用在具有明显强度梯度的外电场中耦合的超冷极性对称陀螺分子,它们作为量子信息的物理载体。在强静电场作用下,每个分子都被诱导进行摆动振荡。基于极性对称陀螺分子的摆动态作为候选量子比特,我们研究了两个极性分子系统在热平衡态下的二分体量子关联,其特征为负性和量子失协,然后分析了由相对熵和l范数测量的相应相干性。此外,我们还研究了在存在固有退相干的情况下系统纠缠和相干的动力学,并探索了它们的时间演化与两个不同初始贝尔态的各种物理系统参数之间的关系。结果发现,通过调整包括外电场、偶极-偶极相互作用、环境温度和退相干因子在内的适当约化变量,可以操纵处于摆动态的两个极性分子的量子关联和相干性。我们的发现可用于基于转动态的分子量子计算。