Suppr超能文献

利用纳米技术治疗软骨损伤的当前再生医学策略综述

A Review of Current Regenerative Medicine Strategies that Utilize Nanotechnology to Treat Cartilage Damage.

作者信息

Kumar R, Griffin M, Butler P E

机构信息

Medicine, UCL Division of Surgery & Interventional Science, London, UK.

Medicine, UCL Division of Surgery & Interventional Science, London, UK; Department of Plastic and Reconstructive Surgery, Royal Free Hampstead NHS Trust Hospital, London, UK.

出版信息

Open Orthop J. 2016 Dec 30;10:862-876. doi: 10.2174/1874325001610010862. eCollection 2016.

Abstract

BACKGROUND

Cartilage is an important tissue found in a variety of anatomical locations. Damage to cartilage is particularly detrimental, owing to its intrinsically poor healing capacity. Current reconstructive options for cartilage repair are limited, and alternative approaches are required. Biomaterial science and Tissue engineering are multidisciplinary areas of research that integrate biological and engineering principles for the purpose of restoring premorbid tissue function. Biomaterial science traditionally focuses on the replacement of diseased or damaged tissue with implants. Conversely, tissue engineering utilizes porous biomimetic scaffolds, containing cells and bioactive molecules, to regenerate functional tissue. However, both paradigms feature several disadvantages. Faced with the increasing clinical burden of cartilage defects, attention has shifted towards the incorporation of Nanotechnology into these areas of regenerative medicine.

METHODS

Searches were conducted on Pubmed using the terms "cartilage", "reconstruction", "nanotechnology", "nanomaterials", "tissue engineering" and "biomaterials". Abstracts were examined to identify articles of relevance, and further papers were obtained from the citations within.

RESULTS

The content of 96 articles was ultimately reviewed. The literature yielded no studies that have progressed beyond and experimentation. Several limitations to the use of nanomaterials to reconstruct damaged cartilage were identified in both the tissue engineering and biomaterial fields.

CONCLUSION

Nanomaterials have unique physicochemical properties that interact with biological systems in novel ways, potentially opening new avenues for the advancement of constructs used to repair cartilage. However, research into these technologies is in its infancy, and clinical translation remains elusive.

摘要

背景

软骨是一种存在于多种解剖位置的重要组织。由于其自身愈合能力较差,软骨损伤尤其有害。目前用于软骨修复的重建方法有限,因此需要其他替代方法。生物材料科学和组织工程是多学科研究领域,它们整合生物学和工程学原理以恢复病前组织功能。传统上,生物材料科学专注于用植入物替代患病或受损组织。相反,组织工程利用含有细胞和生物活性分子的多孔仿生支架来再生功能组织。然而,这两种模式都有几个缺点。面对软骨缺损日益增加的临床负担,注意力已转向将纳米技术纳入这些再生医学领域。

方法

在PubMed上使用“软骨”“重建”“纳米技术”“纳米材料”“组织工程”和“生物材料”等术语进行检索。检查摘要以确定相关文章,并从其中的参考文献中获取更多论文。

结果

最终对96篇文章进行了综述。文献中没有超出体外和体内实验阶段的研究。在组织工程和生物材料领域都发现了使用纳米材料重建受损软骨的几个局限性。

结论

纳米材料具有独特的物理化学性质,能以新颖的方式与生物系统相互作用,这可能为修复软骨的构建物的发展开辟新途径。然而,这些技术的研究尚处于起步阶段,临床转化仍难以实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93f3/5299562/b10df729b81f/TOORTHJ-10-862_F1.jpg

相似文献

1
A Review of Current Regenerative Medicine Strategies that Utilize Nanotechnology to Treat Cartilage Damage.
Open Orthop J. 2016 Dec 30;10:862-876. doi: 10.2174/1874325001610010862. eCollection 2016.
2
Nanotechnology biomimetic cartilage regenerative scaffolds.
Arch Plast Surg. 2014 May;41(3):231-40. doi: 10.5999/aps.2014.41.3.231. Epub 2014 May 12.
3
Targeting Polymeric Nanobiomaterials as a Platform for Cartilage Tissue Engineering.
Curr Pharm Des. 2019;25(17):1915-1932. doi: 10.2174/1381612825666190708184745.
4
The Combination of Bioactive Herbal Compounds with Biomaterials for Regenerative Medicine.
Tissue Eng Part B Rev. 2024 Dec;30(6):607-630. doi: 10.1089/ten.TEB.2024.0002. Epub 2024 Apr 12.
6
Nanomaterials/Nanocomposites for Osteochondral Tissue.
Adv Exp Med Biol. 2018;1058:79-95. doi: 10.1007/978-3-319-76711-6_4.
7
Emerging Strategies in Cartilage Repair and Joint Preservation.
Medicina (Kaunas). 2024 Dec 27;61(1):24. doi: 10.3390/medicina61010024.
8
Mechanically stimulated osteochondral organ culture for evaluation of biomaterials in cartilage repair studies.
Acta Biomater. 2018 Nov;81:256-266. doi: 10.1016/j.actbio.2018.09.058. Epub 2018 Sep 28.
10
Osteochondral Tissue Engineering Dilemma: Scaffolding Trends in Regenerative Medicine.
Stem Cell Rev Rep. 2023 Aug;19(6):1615-1634. doi: 10.1007/s12015-023-10545-x. Epub 2023 Apr 19.

引用本文的文献

1
Mechanotransduction for therapeutic approaches: Cellular aging and rejuvenation.
APL Bioeng. 2025 Jun 6;9(2):021502. doi: 10.1063/5.0263236. eCollection 2025 Jun.
2
Combinatorial Effect of Mesenchymal Stem Cells and Extracellular Vesicles in a Hydrogel on Cartilage Regeneration.
Tissue Eng Regen Med. 2023 Feb;20(1):143-154. doi: 10.1007/s13770-022-00509-6. Epub 2022 Dec 8.

本文引用的文献

3
Nanofibers used for delivery of antimicrobial agents.
Nanomedicine (Lond). 2015 Jul;10(12):1959-71. doi: 10.2217/nnm.15.28.
4
Emerging Applications of Bedside 3D Printing in Plastic Surgery.
Front Surg. 2015 Jun 16;2:25. doi: 10.3389/fsurg.2015.00025. eCollection 2015.
5
Similar outcomes between two-stage revisions for infection and aseptic hip revisions.
Int Orthop. 2016 Mar;40(3):459-64. doi: 10.1007/s00264-015-2850-3. Epub 2015 Jul 2.
6
Thin and ordered hydrogel films deposited through electrospinning technique; a simple and efficient support for organic bilayers.
Biochim Biophys Acta. 2015 Oct;1848(10 Pt A):2126-37. doi: 10.1016/j.bbamem.2015.06.023. Epub 2015 Jun 28.
7
In vitro evaluation of random and aligned polycaprolactone/gelatin fibers via electrospinning for bone tissue engineering.
J Biomater Sci Polym Ed. 2015;26(15):989-1001. doi: 10.1080/09205063.2015.1065598. Epub 2015 Aug 17.
8
Fabrication of high-resolution nanostructures of complex geometry by the single-spot nanolithography method.
Beilstein J Nanotechnol. 2015 Apr 17;6:976-86. doi: 10.3762/bjnano.6.101. eCollection 2015.
9
Hierarchical self-assembly: Self-organized nanostructures in a nematically ordered matrix of self-assembled polymeric chains.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Mar;91(3):032602. doi: 10.1103/PhysRevE.91.032602. Epub 2015 Mar 16.
10
Abandoning microfracture of the knee: has the time come?
Arthroscopy. 2015 Mar;31(3):501-5. doi: 10.1016/j.arthro.2014.12.018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验