Suppr超能文献

细菌适应性进化过程中基因表达及基因表达变异性的转录组水平特征

Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution.

作者信息

Erickson Keesha E, Otoupal Peter B, Chatterjee Anushree

机构信息

Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, USA.

Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA.

出版信息

mSphere. 2017 Feb 15;2(1). doi: 10.1128/mSphere.00009-17. eCollection 2017 Jan-Feb.

Abstract

Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. Even initially sensitive bacteria can rapidly thwart antibiotic treatment through stress response processes known as adaptive resistance. Adaptive resistance fosters transient tolerance increases and the emergence of mutations conferring heritable drug resistance. In order to extend the applicable lifetime of new antibiotics, we must seek to hinder the occurrence of bacterial adaptive resistance; however, the regulation of adaptation is difficult to identify due to immense heterogeneity emerging during evolution. This study specifically seeks to generate heterogeneity by adapting bacteria to different stresses and then examines gene expression trends across the disparate populations in order to pinpoint key genes and pathways associated with adaptive resistance. The targets identified here may eventually inform strategies for impeding adaptive resistance and prolonging the effectiveness of antibiotic treatment.

摘要

抗生素耐药细菌是一个日益严重的公共卫生问题,因为出现了对几乎所有现有治疗方法都具有耐药性的菌株。导致这一危机的一个因素是细菌的适应能力,它们表现出显著的表型和基因表达异质性,以便在恶劣环境中获得生存优势。生物群体中基因表达的这种高度变异性使得识别细菌适应的关键调节因子成为一项具有挑战性的任务。在这里,我们通过研究细菌适应不同毒素(包括抗生素和生物燃料)后的转录组图谱来研究适应性耐药的调控。我们通过传统的基因表达分析以及使用一种检查差异基因表达变异性的新分析技术来定位潜在的靶基因。通过研究不同适应条件下的趋势,我们确定了一组行为保守的基因,包括那些参与细胞运动、代谢、膜结构和运输的基因,以及几个功能未知的基因。为了验证观察到的变化的生物学相关性,我们使用成簇规律间隔短回文重复序列(CRISPR)-dCas9 对基因表达进行合成扰动。与抗生素治疗相结合对选定基因的操纵促进了适应性耐药,这通过抗生素耐受性程度的增加和最低抑菌浓度(MIC)的异质性得到证明。我们研究了已鉴定基因影响适应的机制,发现选定的差异可变基因有可能影响代谢率、突变率和运动性。总体而言,这项工作为一种复杂的非遗传反应提供了证据,这种反应包括基因表达和基因表达变异性的变化,是适应性耐药的基础。即使是最初敏感的细菌也可以通过称为适应性耐药的应激反应过程迅速挫败抗生素治疗。适应性耐药促进了短暂的耐受性增加以及赋予遗传性耐药性的突变的出现。为了延长新抗生素的适用寿命,我们必须设法阻碍细菌适应性耐药的发生;然而,由于进化过程中出现的巨大异质性,适应的调控很难确定。本研究特别旨在通过使细菌适应不同压力来产生异质性,然后检查不同群体中的基因表达趋势,以确定与适应性耐药相关的关键基因和途径。这里确定的靶点最终可能为阻碍适应性耐药和延长抗生素治疗效果的策略提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e0/5311112/cd6d3e4c7133/sph0011622320001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验