College of Science, National University of Defense Technology, Changsha 410073, People's Republic of China.
Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, 40225 Germany.
Sci Rep. 2017 Feb 20;7:42666. doi: 10.1038/srep42666.
Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~10 W/cm modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these "superponderomotive" energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations.
激光加速离子的高效能量提升对于它们在生物医学和强子研究中的应用至关重要。可实现的能量持续上升,目前最高能量可达医疗治疗能窗。在这里,通过使用10W/cm2 的适度强度激光脉冲,提出了一种从等离子体微通道靶同时加速100MeV 质子和多~100MeV 碳离子的新方案。研究发现,两列过密电子束从微通道中被拉出,并通过在等离子体通道中激发的纵向电场有效地加速。通过优化通道尺寸,这些“超强动压”高能电子可以聚焦在附着的塑料基板的前表面。在背面形成了更强的鞘层电场,导致离子能量比简单的平面几何结构增加了约 10 倍。推导出了最佳通道尺寸和离子最大能量的解析预测,这与粒子模拟结果吻合较好。