Shah Ruchit G, DeVore Dale, Pierce Mark C, Silver Frederick H
Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
Division of Biomaterials, DV Consulting Services, 3 Warwick Drive, Chelmsford, Massachusetts.
J Biomed Mater Res A. 2017 Jun;105(6):1666-1671. doi: 10.1002/jbm.a.36041. Epub 2017 Mar 27.
Several new methods have been used to non-destructively evaluate the mechanical properties of materials and tissues including magnetic resonance elastography, ultrasound elastography, optical coherence elastography, and various forms of vibrational analysis. One of the limitations of using these methods is the need to establish a relationship between the modulus measured using each new technique and moduli measured using well-established techniques such as constant rate-of-strain and incremental stress-strain curves. In addition, there are no available methods for analyzing the mechanical properties of the individual components of multi-component materials. In this article, we present data showing that there is a strong correlation (correlation coefficient >0.9) between the modulus measured using classical uniaxial tensile incremental stress-strain tests and those made using a combination of optical coherence tomography and vibrational analysis. Beyond this, we demonstrate that the moduli of the major structural components of pig skin can be measured using this technique. These results suggest that optical coherence tomography in concert with vibrational analysis can be used to measure the moduli of biological and implant materials without having to determine Poisson's ratio. In addition, each of the moduli of the major fibrous components of pig skin can be measured concurrently using this technique. These results may be useful in the characterization of synthetic implants and tissue derived materials without requiring removal of one or more components that are to be characterized. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1666-1671, 2017.
几种新方法已被用于无损评估材料和组织的力学性能,包括磁共振弹性成像、超声弹性成像、光学相干弹性成像以及各种形式的振动分析。使用这些方法的局限性之一在于,需要在使用每种新技术测量的模量与使用诸如恒定应变率和增量应力 - 应变曲线等成熟技术测量的模量之间建立关系。此外,目前尚无用于分析多组分材料各个组分力学性能的可用方法。在本文中,我们展示的数据表明,使用经典单轴拉伸增量应力 - 应变试验测量的模量与使用光学相干断层扫描和振动分析相结合测量的模量之间存在很强的相关性(相关系数>0.9)。除此之外,我们证明了使用该技术可以测量猪皮主要结构成分的模量。这些结果表明,光学相干断层扫描与振动分析相结合可用于测量生物材料和植入材料的模量,而无需确定泊松比。此外,使用该技术可以同时测量猪皮主要纤维成分的每个模量。这些结果对于合成植入物和组织衍生材料的表征可能有用,而无需去除一个或多个待表征的成分。©2017威利期刊公司。《生物医学材料研究杂志》A部分:105A:1666 - 1671,2017年。