Chen Yao-Tien
Department of Applied Mobile Technology, Yuanpei University of Medical Technology, No. 306, Yuanpei St., HsinChu City 30015, Taiwan.
Magn Reson Imaging. 2017 Jun;39:175-193. doi: 10.1016/j.mri.2017.02.008. Epub 2017 Feb 20.
The study proposes a novel approach for segmentation and visualization plus value-added surface area and volume measurements for brain medical image analysis. The proposed method contains edge detection and Bayesian based level set segmentation, surface and volume rendering, and surface area and volume measurements for 3D objects of interest (i.e., brain tumor, brain tissue, or whole brain). Two extensions based on edge detection and Bayesian level set are first used to segment 3D objects. Ray casting and a modified marching cubes algorithm are then adopted to facilitate volume and surface visualization of medical-image dataset. To provide physicians with more useful information for diagnosis, the surface area and volume of an examined 3D object are calculated by the techniques of linear algebra and surface integration. Experiment results are finally reported in terms of 3D object extraction, surface and volume rendering, and surface area and volume measurements for medical image analysis.
该研究提出了一种用于脑医学图像分析的分割、可视化以及增值表面积和体积测量的新方法。所提出的方法包括边缘检测和基于贝叶斯的水平集分割、表面和体积渲染以及对感兴趣的三维物体(即脑肿瘤、脑组织或整个大脑)的表面积和体积测量。首先使用基于边缘检测和贝叶斯水平集的两种扩展方法来分割三维物体。然后采用光线投射和改进的移动立方体算法来促进医学图像数据集的体积和表面可视化。为了给医生提供更多有用的诊断信息,通过线性代数和表面积分技术计算被检查三维物体的表面积和体积。最后报告了关于三维物体提取、表面和体积渲染以及医学图像分析的表面积和体积测量的实验结果。