Suppr超能文献

融合空间灰度依赖和分形纹理特征用于甲状腺病变的表征

Fusion of spatial gray level dependency and fractal texture features for the characterization of thyroid lesions.

作者信息

Raghavendra U, Rajendra Acharya U, Gudigar Anjan, Hong Tan Jen, Fujita Hamido, Hagiwara Yuki, Molinari Filippo, Kongmebhol Pailin, Hoong Ng Kwan

机构信息

Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal University, Manipal 576104, India.

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Clementi 599489, Singapore; Department of Biomedical Engineering, School of Science and Technology, SIM University, Clementi 599491, Singapore; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.

出版信息

Ultrasonics. 2017 May;77:110-120. doi: 10.1016/j.ultras.2017.02.003. Epub 2017 Feb 6.

Abstract

Thyroid is a small gland situated at the anterior side of the neck and one of the largest glands of the endocrine system. The abrupt cell growth or malignancy in the thyroid gland may cause thyroid cancer. Ultrasound images distinctly represent benign and malignant lesions, but accuracy may be poor due to subjective interpretation. Computer Aided Diagnosis (CAD) can minimize the errors created due to subjective interpretation and assists to make fast accurate diagnosis. In this work, fusion of Spatial Gray Level Dependence Features (SGLDF) and fractal textures are used to decipher the intrinsic structure of benign and malignant thyroid lesions. These features are subjected to graph based Marginal Fisher Analysis (MFA) to reduce the number of features. The reduced features are subjected to various ranking methods and classifiers. We have achieved an average accuracy, sensitivity and specificity of 97.52%, 90.32% and 98.57% respectively using Support Vector Machine (SVM) classifier. The achieved maximum Area Under Curve (AUC) is 0.9445. Finally, Thyroid Clinical Risk Index (TCRI) a single number is developed using two MFA features to discriminate the two classes. This prototype system is ready to be tested with huge diverse database.

摘要

甲状腺是位于颈部前方的一个小腺体,也是内分泌系统最大的腺体之一。甲状腺内细胞的突然生长或恶变可能导致甲状腺癌。超声图像能清晰显示良性和恶性病变,但由于主观解读,准确性可能较差。计算机辅助诊断(CAD)可以将主观解读产生的误差降至最低,并有助于快速准确地做出诊断。在这项工作中,空间灰度依赖特征(SGLDF)和分形纹理的融合被用于解读良性和恶性甲状腺病变的内在结构。这些特征经过基于图的边际Fisher分析(MFA)以减少特征数量。对减少后的特征采用各种排序方法和分类器。使用支持向量机(SVM)分类器,我们分别达到了97.52%、90.32%和98.57%的平均准确率、灵敏度和特异性。所达到的最大曲线下面积(AUC)为0.9445。最后,利用两个MFA特征开发了一个单一数字的甲状腺临床风险指数(TCRI)来区分这两类。这个原型系统准备好使用大量不同的数据库进行测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验