Suppr超能文献

基于自监督学习双分支注意力学习框架的甲状腺结节超声识别方法

Identification method of thyroid nodule ultrasonography based on self-supervised learning dual-branch attention learning framework.

作者信息

Xie Yifei, Yang Zhengfei, Yang Qiyu, Liu Dongning, Tang Shuzhuang, Yang Lin, Duan Xuan, Hu Changming, Lu Yu-Jing, Wang Jiaxun

机构信息

Guangzhou Panyu Central Hospital, Guangzhou, 510006 Guangdong People's Republic of China.

Guangdong University of Technology, Guangzhou, 510006 Guangdong People's Republic of China.

出版信息

Health Inf Sci Syst. 2024 Jan 17;12(1):7. doi: 10.1007/s13755-023-00266-3. eCollection 2024 Dec.

Abstract

Thyroid ultrasound is a widely used diagnostic technique for thyroid nodules in clinical practice. However, due to the characteristics of ultrasonic imaging, such as low image contrast, high noise levels, and heterogeneous features, detecting and identifying nodules remains challenging. In addition, high-quality labeled medical imaging datasets are rare, and thyroid ultrasound images are no exception, posing a significant challenge for machine learning applications in medical image analysis. In this study, we propose a Dual-branch Attention Learning (DBAL) convolutional neural network framework to enhance thyroid nodule detection by capturing contextual information. Leveraging jigsaw puzzles as a pretext task during network training, we improve the network's generalization ability with limited data. Our framework effectively captures intrinsic features in a global-to-local manner. Experimental results involve self-supervised pre-training on unlabeled ultrasound images and fine-tuning using 1216 clinical ultrasound images from a collaborating hospital. DBAL achieves accurate discrimination of thyroid nodules, with a 88.5% correct diagnosis rate for malignant and benign nodules and a 93.7% area under the ROC curve. This novel approach demonstrates promising potential in clinical applications for its accuracy and efficiency.

摘要

甲状腺超声是临床实践中广泛用于甲状腺结节的诊断技术。然而,由于超声成像的特点,如图像对比度低、噪声水平高和特征不均匀,检测和识别结节仍然具有挑战性。此外,高质量的标注医学影像数据集很少,甲状腺超声图像也不例外,这对医学图像分析中的机器学习应用构成了重大挑战。在本研究中,我们提出了一种双分支注意力学习(DBAL)卷积神经网络框架,通过捕获上下文信息来增强甲状腺结节检测。在网络训练期间,以拼图游戏作为 pretext 任务,我们利用有限的数据提高了网络的泛化能力。我们的框架以全局到局部的方式有效地捕获内在特征。实验结果包括对未标注超声图像进行自监督预训练,并使用来自合作医院的 1216 幅临床超声图像进行微调。DBAL 实现了对甲状腺结节的准确判别,恶性和良性结节的正确诊断率为 88.5%,ROC 曲线下面积为 93.7%。这种新颖的方法因其准确性和效率在临床应用中显示出有前景的潜力。

相似文献

1
Identification method of thyroid nodule ultrasonography based on self-supervised learning dual-branch attention learning framework.
Health Inf Sci Syst. 2024 Jan 17;12(1):7. doi: 10.1007/s13755-023-00266-3. eCollection 2024 Dec.
3
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.
Front Oncol. 2025 Jun 18;15:1480384. doi: 10.3389/fonc.2025.1480384. eCollection 2025.
6
Pulmonary nodule detection in low dose computed tomography using a medical-to-medical transfer learning approach.
J Med Imaging (Bellingham). 2024 Jul;11(4):044502. doi: 10.1117/1.JMI.11.4.044502. Epub 2024 Jul 9.
7
Transabdominal ultrasound and endoscopic ultrasound for diagnosis of gallbladder polyps.
Cochrane Database Syst Rev. 2018 Aug 15;8(8):CD012233. doi: 10.1002/14651858.CD012233.pub2.
9
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2.
10
Contrast-enhanced ultrasound for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease.
Cochrane Database Syst Rev. 2022 Sep 2;9(9):CD013483. doi: 10.1002/14651858.CD013483.pub2.

本文引用的文献

1
Self-supervised learning methods and applications in medical imaging analysis: a survey.
PeerJ Comput Sci. 2022 Jul 19;8:e1045. doi: 10.7717/peerj-cs.1045. eCollection 2022.
2
Automatic diagnosis for thyroid nodules in ultrasound images by deep neural networks.
Med Image Anal. 2020 Apr;61:101665. doi: 10.1016/j.media.2020.101665. Epub 2020 Feb 4.
4
Dataset of breast ultrasound images.
Data Brief. 2019 Nov 21;28:104863. doi: 10.1016/j.dib.2019.104863. eCollection 2020 Feb.
5
Breast cancer statistics, 2019.
CA Cancer J Clin. 2019 Nov;69(6):438-451. doi: 10.3322/caac.21583. Epub 2019 Oct 2.
6
Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†.
Ann Oncol. 2019 Dec 1;30(12):1856-1883. doi: 10.1093/annonc/mdz400.
8
Self-supervised learning for medical image analysis using image context restoration.
Med Image Anal. 2019 Dec;58:101539. doi: 10.1016/j.media.2019.101539. Epub 2019 Jul 26.
9
Multitask Cascade Convolution Neural Networks for Automatic Thyroid Nodule Detection and Recognition.
IEEE J Biomed Health Inform. 2019 May;23(3):1215-1224. doi: 10.1109/JBHI.2018.2852718. Epub 2018 Jul 3.
10
Using neutrosophic graph cut segmentation algorithm for qualified rendering image selection in thyroid elastography video.
Health Inf Sci Syst. 2017 Oct 27;5(1):8. doi: 10.1007/s13755-017-0032-y. eCollection 2017 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验