Lawton Kristy J, Perry Wick M, Yamaguchi Ayako, Zornik Erik
Biology Department, Reed College, Portland, Oregon 97202, and.
Biology Department, University of Utah, Salt Lake City, Utah 84112.
J Neurosci. 2017 Mar 22;37(12):3264-3275. doi: 10.1523/JNEUROSCI.2755-16.2017. Epub 2017 Feb 20.
Central patterns generators (CPGs) are neural circuits that drive rhythmic motor output without sensory feedback. Vertebrate CPGs are generally believed to operate in a top-down manner in which premotor interneurons activate motor neurons that in turn drive muscles. In contrast, the frog () vocal CPG contains a functionally unexplored neuronal projection from the motor nucleus to the premotor nucleus, indicating a recurrent pathway that may contribute to rhythm generation. In this study, we characterized the function of this bottom-up connection. The vocal CPG produces a 50-60 Hz "fast trill" song used by males during courtship. We recorded "fictive vocalizations" in the CPG from the laryngeal nerve while simultaneously recording premotor activity at the population and single-cell level. We show that transecting the motor-to-premotor projection eliminated the characteristic firing rate of premotor neurons. Silencing motor neurons with the intracellular sodium channel blocker QX-314 also disrupted premotor rhythms, as did blockade of nicotinic synapses in the motor nucleus (the putative location of motor neuron-to-interneuron connections). Electrically stimulating the laryngeal nerve elicited primarily IPSPs in premotor neurons that could be blocked by a nicotinic receptor antagonist. Our results indicate that an inhibitory signal, activated by motor neurons, is required for proper CPG function. To our knowledge, these findings represent the first example of a CPG in which precise premotor rhythms are tuned by motor neuron activity. Central pattern generators (CPGs) are neural circuits that produce rhythmic behaviors. In vertebrates, motor neurons are not commonly known to contribute to CPG function, with the exception of a few spinal circuits where the functional significance of motor neuron feedback is still poorly understood. The frog hindbrain vocal circuit contains a previously unexplored connection from the motor to premotor region. Our results indicate that motor neurons activate this bottom-up connection, and blocking this signal eliminates normal premotor activity. These findings may promote increased awareness of potential involvement of motor neurons in a wider range of CPGs, perhaps clarifying our understanding of network principles underlying motor behaviors in numerous organisms, including humans.
中枢模式发生器(CPGs)是在没有感觉反馈的情况下驱动节律性运动输出的神经回路。脊椎动物的CPGs通常被认为是以自上而下的方式运作,即运动前中间神经元激活运动神经元,而运动神经元进而驱动肌肉。相比之下,蛙类( )的发声CPG包含一条从运动核到运动前核的功能未被探索的神经元投射,这表明存在一条可能有助于节律产生的反馈通路。在本研究中,我们对这条自下而上连接的功能进行了表征。蛙类的发声CPG产生一种雄性在求偶时使用的50 - 60赫兹的“快速颤音”歌声。我们在喉神经处记录蛙类CPG中的“虚拟发声”,同时在群体和单细胞水平记录运动前活动。我们发现,切断从运动核到运动前核的投射会消除运动前神经元的特征性放电频率。用细胞内钠通道阻滞剂QX - 314使运动神经元沉默也会扰乱运动前节律,运动核中烟碱型突触的阻断(运动神经元与中间神经元连接的假定位置)也会如此。电刺激喉神经主要在运动前神经元中引发抑制性突触后电位(IPSPs),而这种电位可被烟碱型受体拮抗剂阻断。我们的结果表明,由运动神经元激活的抑制性信号是CPG正常功能所必需的。据我们所知,这些发现代表了CPG的首个例子,即精确的运动前节律由运动神经元活动进行调节。中枢模式发生器(CPGs)是产生节律性行为的神经回路。在脊椎动物中,除了少数脊髓回路,运动神经元对CPG功能的贡献通常并不为人所知,而在这些脊髓回路中,运动神经元反馈的功能意义仍知之甚少。蛙类后脑发声回路包含一条先前未被探索的从运动核到运动前区域的连接。我们的结果表明,运动神经元激活了这条自下而上的连接,阻断该信号会消除正常的运动前活动。这些发现可能会促使人们更加意识到运动神经元在更广泛的CPG中潜在的参与情况,或许有助于阐明我们对包括人类在内的众多生物体运动行为背后网络原理的理解。