Institute of Biology, Karl-Franzens-University Graz, Graz, Austria.
Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States.
Elife. 2021 Mar 15;10:e59390. doi: 10.7554/eLife.59390.
Precise neuronal firing is especially important for behaviors highly dependent on the correct sequencing and timing of muscle activity patterns, such as acoustic signaling. Acoustic signaling is an important communication modality for vertebrates, including many teleost fishes. Toadfishes are well known to exhibit high temporal fidelity in synchronous motoneuron firing within a hindbrain network directly determining the temporal structure of natural calls. Here, we investigated how these motoneurons maintain synchronous activation. We show that pronounced temporal precision in population-level motoneuronal firing depends on gap junction-mediated, glycinergic inhibition that generates a period of reduced probability of motoneuron activation. Super-resolution microscopy confirms glycinergic release sites formed by a subset of adjacent premotoneurons contacting motoneuron somata and dendrites. In aggregate, the evidence supports the hypothesis that gap junction-mediated, glycinergic inhibition provides a timing mechanism for achieving synchrony and temporal precision in the millisecond range for rapid modulation of acoustic waveforms.
精确的神经元放电对于高度依赖肌肉活动模式正确排序和定时的行为尤为重要,例如声学信号。声学信号是脊椎动物(包括许多硬骨鱼)的一种重要交流方式。蟾蜍鱼在直接决定自然叫声时间结构的后脑网络中同步运动神经元放电方面表现出很高的时间保真度。在这里,我们研究了这些运动神经元如何保持同步激活。我们表明,群体水平运动神经元放电的明显时间精度取决于缝隙连接介导的甘氨酸能抑制,该抑制产生了运动神经元激活概率降低的时期。超分辨率显微镜证实,由相邻前运动神经元的一部分形成的甘氨酸能释放位点与运动神经元胞体和树突接触。总的来说,这些证据支持这样一种假设,即缝隙连接介导的甘氨酸能抑制为毫秒级快速调制声波形的同步和时间精度提供了一种定时机制。