Vissers M C, Winterbourn C C
Department of Pathology, Clinical School of Medicine, Christchurch Hospital, New Zealand.
Biochem J. 1987 Jul 1;245(1):277-80. doi: 10.1042/bj2450277.
The susceptibility of a number of human neutrophil granule enzymes to oxidative inactivation was investigated. Addition of H2O2 to the cell-free medium from stimulated neutrophils resulted in inactivation of all enzymes tested. This was inhibited by azide and methionine, indicating that inactivation was due to myeloperoxidase-derived oxidants. Lysozyme was more than 50% inactivated by one addition of 100 nmol of H2O2/ml, whereas myeloperoxidase, beta-glucuronidase, gelatinase and collagenase were almost completely inactivated by three additions. Cathepsin G was slightly less susceptible, whereas elastase was extremely resistant to oxidative attack. Myeloperoxidase-dependent enzyme inactivation may be a means whereby the neutrophil can terminate the activity of its granule enzymes and control the release of degradative enzymes into the tissues.