Schäfer Patrick, Karl Mike O
TU Dresden, Center for Regenerative Therapies Dresden (CRTD), Fetscherstr. 107, Dresden, 01307, Germany.
Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Arnoldstr. 13, Dresden, 01307, Germany.
Glia. 2017 May;65(5):828-847. doi: 10.1002/glia.23130. Epub 2017 Feb 21.
Reactive gliosis is an umbrella term for various glia functions in neurodegenerative diseases and upon injury. Specifically, Müller glia (MG) in some species readily regenerate retinal neurons to restore vision loss after insult, whereas mammalian MG respond by reactive gliosis-a heterogeneous response which frequently includes cell hypertrophy and proliferation. Limited regeneration has been stimulated in mammals, with a higher propensity in young MG, and in vitro compared to in vivo, but the underlying processes are unknown. To facilitate studies on the mechanisms regulating and limiting glia functions, we developed a strategy to purify glia and their progeny by fluorescence-activated cell sorting. Dual-transgenic nuclear reporter mice, which label neurons and glia with red and green fluorescent proteins, respectively, have enabled MG enrichment up to 93% purity. We applied this approach to MG in a mouse retina regeneration ex vivo assay. Combined cell size and cell cycle analysis indicates that most MG hypertrophy and a subpopulation proliferates which, over time, become even larger in cell size than the ones that do not proliferate. MG undergo timed differential genomic changes in genes controlling stemness and neurogenic competence; and glial markers are downregulated. Genes that are potentially required for, or associated with, regeneration and reactive gliosis are differentially regulated by retina explant culture time, epidermal growth factor stimulation, and animal age. Thus, MG enrichment facilitates cellular and molecular studies which, in combination with the mouse retina regeneration assay, provide an experimental approach for deciphering mechanisms that possibly regulate reactive gliosis and limit regeneration in mammals.
反应性胶质增生是神经退行性疾病和损伤后各种胶质细胞功能的统称。具体而言,某些物种的 Müller 胶质细胞(MG)在受到损伤后能够轻易地再生视网膜神经元以恢复视力丧失,而哺乳动物的 MG 则通过反应性胶质增生做出反应——这是一种异质性反应,通常包括细胞肥大和增殖。在哺乳动物中,有限的再生已被激发,与体内相比,年轻的 MG 在体外具有更高的再生倾向,但潜在的机制尚不清楚。为了便于研究调节和限制胶质细胞功能的机制,我们开发了一种通过荧光激活细胞分选来纯化胶质细胞及其后代的策略。双转基因核报告小鼠分别用红色和绿色荧光蛋白标记神经元和胶质细胞,能够将 MG 富集到纯度高达 93%。我们将这种方法应用于小鼠视网膜离体再生试验中的 MG。结合细胞大小和细胞周期分析表明,大多数 MG 肥大,并且有一个亚群增殖,随着时间的推移,其细胞大小比不增殖的 MG 变得更大。MG 在控制干性和神经源性能力的基因中经历定时的差异基因组变化;并且胶质细胞标记物被下调。视网膜外植体培养时间、表皮生长因子刺激和动物年龄对再生和反应性胶质增生可能需要或与之相关的基因有不同的调节作用。因此,MG 富集有助于细胞和分子研究,结合小鼠视网膜再生试验,为破译可能调节哺乳动物反应性胶质增生和限制再生的机制提供了一种实验方法。