Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Science. 2020 Nov 20;370(6519). doi: 10.1126/science.abb8598. Epub 2020 Oct 1.
Injury induces retinal Müller glia of certain cold-blooded vertebrates, but not those of mammals, to regenerate neurons. To identify gene regulatory networks that reprogram Müller glia into progenitor cells, we profiled changes in gene expression and chromatin accessibility in Müller glia from zebrafish, chick, and mice in response to different stimuli. We identified evolutionarily conserved and species-specific gene networks controlling glial quiescence, reactivity, and neurogenesis. In zebrafish and chick, the transition from quiescence to reactivity is essential for retinal regeneration, whereas in mice, a dedicated network suppresses neurogenic competence and restores quiescence. Disruption of nuclear factor I transcription factors, which maintain and restore quiescence, induces Müller glia to proliferate and generate neurons in adult mice after injury. These findings may aid in designing therapies to restore retinal neurons lost to degenerative diseases.
损伤可诱导某些冷血脊椎动物的视网膜 Müller 胶质细胞而非哺乳动物的 Müller 胶质细胞再生神经元。为了鉴定将 Müller 胶质细胞重编程为祖细胞的基因调控网络,我们对斑马鱼、鸡和小鼠的 Müller 胶质细胞在不同刺激下的基因表达和染色质可及性变化进行了分析。我们鉴定了控制神经胶质细胞静息、反应性和神经发生的进化保守和种特异性基因网络。在斑马鱼和鸡中,从静息到反应的转变对于视网膜再生至关重要,而在小鼠中,专门的网络抑制神经发生能力并恢复静息状态。核因子 I 转录因子的破坏,这些因子维持和恢复静息状态,可诱导成年小鼠的 Müller 胶质细胞增殖并在损伤后产生神经元。这些发现可能有助于设计治疗方法,以恢复因退行性疾病而丧失的视网膜神经元。