Suppr超能文献

用于再生工程的水凝胶的开发。

Development of hydrogels for regenerative engineering.

作者信息

Guan Xiaofei, Avci-Adali Meltem, Alarçin Emine, Cheng Hao, Kashaf Sara Saheb, Li Yuxiao, Chawla Aditya, Jang Hae Lin, Khademhosseini Ali

机构信息

Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women's Hospital, MA 02139, Boston, MA, USA.

Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Biotechnol J. 2017 May;12(5). doi: 10.1002/biot.201600394. Epub 2017 Feb 21.

Abstract

The aim of regenerative engineering is to restore complex tissues and biological systems through convergence in the fields of advanced biomaterials, stem cell science, and developmental biology. Hydrogels are one of the most attractive biomaterials for regenerative engineering, since they can be engineered into tissue mimetic 3D scaffolds to support cell growth due to their similarity to native extracellular matrix. Advanced nano- and micro-technologies have dramatically increased the ability to control properties and functionalities of hydrogel materials by facilitating biomimetic fabrication of more sophisticated compositions and architectures, thus extending our understanding of cell-matrix interactions at the nanoscale. With this perspective, this review discusses the most commonly used hydrogel materials and their fabrication strategies for regenerative engineering. We highlight the physical, chemical, and functional modulation of hydrogels to design and engineer biomimetic tissues based on recent achievements in nano- and micro-technologies. In addition, current hydrogel-based regenerative engineering strategies for treating multiple tissues, such as musculoskeletal, nervous and cardiac tissue, are also covered in this review. The interaction of multiple disciplines including materials science, cell biology, and chemistry, will further play an important role in the design of functional hydrogels for the regeneration of complex tissues.

摘要

再生工程的目标是通过先进生物材料、干细胞科学和发育生物学等领域的融合来恢复复杂组织和生物系统。水凝胶是再生工程中最具吸引力的生物材料之一,因为它们可以被设计成模仿组织的三维支架,由于其与天然细胞外基质相似,能够支持细胞生长。先进的纳米和微技术通过促进更复杂成分和结构的仿生制造,极大地提高了控制水凝胶材料性能和功能的能力,从而扩展了我们对纳米尺度上细胞-基质相互作用的理解。基于此观点,本综述讨论了再生工程中最常用的水凝胶材料及其制造策略。我们基于纳米和微技术的最新成果,强调水凝胶的物理、化学和功能调节,以设计和构建仿生组织。此外,本综述还涵盖了目前基于水凝胶的用于治疗多种组织(如肌肉骨骼、神经和心脏组织)的再生工程策略。包括材料科学、细胞生物学和化学在内的多学科相互作用,将在设计用于复杂组织再生的功能性水凝胶中进一步发挥重要作用。

相似文献

1
Development of hydrogels for regenerative engineering.
Biotechnol J. 2017 May;12(5). doi: 10.1002/biot.201600394. Epub 2017 Feb 21.
2
Natural-Based Hydrogels for Tissue Engineering Applications.
Molecules. 2020 Dec 11;25(24):5858. doi: 10.3390/molecules25245858.
3
Hierarchical Design of Tissue-Mimetic Fibrillar Hydrogel Scaffolds.
Adv Healthc Mater. 2024 Jun;13(16):e2303167. doi: 10.1002/adhm.202303167. Epub 2024 Apr 30.
4
Cell-laden hydrogels for osteochondral and cartilage tissue engineering.
Acta Biomater. 2017 Jul 15;57:1-25. doi: 10.1016/j.actbio.2017.01.036. Epub 2017 Jan 11.
8
Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine.
Adv Colloid Interface Sci. 2017 Sep;247:589-609. doi: 10.1016/j.cis.2017.07.012. Epub 2017 Jul 16.
9
Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.
Acta Biomater. 2017 Oct 15;62:42-63. doi: 10.1016/j.actbio.2017.07.028. Epub 2017 Jul 20.
10
Cartilage and bone tissue engineering using hydrogels.
Biomed Mater Eng. 2006;16(4 Suppl):S107-13.

引用本文的文献

1
Exosome-Loaded Bioscaffolds for Spinal Cord Injuries: A Review.
Stem Cells Int. 2025 Jul 30;2025:8841129. doi: 10.1155/sci/8841129. eCollection 2025.
3
Physical stimuli-responsive DNA hydrogels: design, fabrication strategies, and biomedical applications.
J Nanobiotechnology. 2025 Mar 22;23(1):233. doi: 10.1186/s12951-025-03237-w.
4
Innovative hydrogel-based therapies for ischemia-reperfusion injury: bridging the gap between pathophysiology and treatment.
Mater Today Bio. 2024 Oct 10;29:101295. doi: 10.1016/j.mtbio.2024.101295. eCollection 2024 Dec.
5
Novel Strategies for Spatiotemporal and Controlled BMP-2 Delivery in Bone Tissue Engineering.
Cell Transplant. 2024 Jan-Dec;33:9636897241276733. doi: 10.1177/09636897241276733.
8
Biomimetic Hydrogel Strategies for Cancer Therapy.
Gels. 2024 Jun 30;10(7):437. doi: 10.3390/gels10070437.
10
A Composite Hydrogel Functionalized by Borosilicate Bioactive Glasses and VEGF for Critical-Size Bone Regeneration.
Adv Sci (Weinh). 2024 Jul;11(26):e2400349. doi: 10.1002/advs.202400349. Epub 2024 May 7.

本文引用的文献

1
Three-Dimensional Nanofiber Hybrid Scaffold Directs and Enhances Axonal Regeneration after Spinal Cord Injury.
ACS Biomater Sci Eng. 2016 Aug 8;2(8):1319-1329. doi: 10.1021/acsbiomaterials.6b00248. Epub 2016 Jul 19.
3
Injectable biodegradable hydrogels: progress and challenges.
J Mater Chem B. 2013 Oct 28;1(40):5371-5388. doi: 10.1039/c3tb20940g. Epub 2013 Aug 23.
4
Rapid Continuous Multimaterial Extrusion Bioprinting.
Adv Mater. 2017 Jan;29(3). doi: 10.1002/adma.201604630. Epub 2016 Nov 17.
5
Enzymatically prepared redox-responsive hydrogels as potent matrices for hepatocellular carcinoma cell spheroid formation.
Biotechnol J. 2016 Nov;11(11):1452-1460. doi: 10.1002/biot.201600087. Epub 2016 Sep 27.
6
Fabrication of multilayered vascular tissues using microfluidic agarose hydrogel platforms.
Biotechnol J. 2016 Nov;11(11):1415-1423. doi: 10.1002/biot.201600083. Epub 2016 Sep 26.
7
Direct 3D bioprinting of perfusable vascular constructs using a blend bioink.
Biomaterials. 2016 Nov;106:58-68. doi: 10.1016/j.biomaterials.2016.07.038. Epub 2016 Aug 2.
8
Controlling stem cell behavior with decellularized extracellular matrix scaffolds.
Curr Opin Solid State Mater Sci. 2016 Aug;20(4):193-201. doi: 10.1016/j.cossms.2016.02.001.
9
Improved scaffold biocompatibility through anti-Fibronectin aptamer functionalization.
Acta Biomater. 2016 Sep 15;42:147-156. doi: 10.1016/j.actbio.2016.07.035. Epub 2016 Jul 20.
10
Spatially patterned matrix elasticity directs stem cell fate.
Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):E4439-45. doi: 10.1073/pnas.1609731113. Epub 2016 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验