Suppr超能文献

为再生医学开发仿生可注射和大孔生物水凝胶。

Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine.

机构信息

INSERM, UMRS 1229, Regenerative Medicine and Skeleton (RMeS), 1 Place Alexis Ricordeau BP 84215, 44042 Nantes, France; Université de Nantes, Regenerative Medicine and Skeleton (RMeS), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes, France.

INSERM, UMRS 1229, Regenerative Medicine and Skeleton (RMeS), 1 Place Alexis Ricordeau BP 84215, 44042 Nantes, France; Université de Nantes, Regenerative Medicine and Skeleton (RMeS), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes, France; Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 4 (OTONN), 1 Place Alexis Ricordeau, 44042 Nantes, France.

出版信息

Adv Colloid Interface Sci. 2017 Sep;247:589-609. doi: 10.1016/j.cis.2017.07.012. Epub 2017 Jul 16.

Abstract

Repairing or replacing damaged human tissues has been the ambitious goal of regenerative medicine for over 25years. One promising approach is the use of hydrated three-dimensional scaffolds, known as hydrogels, which have had good results repairing tissues in pre-clinical trials. Benefiting from breakthrough advances in the field of biology, and more particularly regarding cell/matrix interactions, these hydrogels are now designed to recapitulate some of the fundamental cues of native environments to drive the local tissue regeneration. We highlight the key parameters that are required for the development of smart and biomimetic hydrogels. We also review the wide variety of polymers, crosslinking methods, and manufacturing processes that have been developed over the years. Of particular interest is the emergence of supramolecular chemistries, allowing for the development of highly functional and reversible biohydrogels. Moreover, advances in computer assisted design and three-dimensional printing have revolutionized the production of macroporous hydrogels and allowed for more complex designs than ever before with the opportunity to develop fully reconstituted organs. Today, the field of biohydrogels for regenerative medicine is a prolific area of research with applications for most bodily tissues. On top of these applications, injectable hydrogels and macroporous hydrogels (foams) were found to be the most successful. While commonly associated with cells or biologics as drug delivery systems to increase therapeutic outcomes, they are steadily being used in the emerging fields of organs-on-chip and hydrogel-assisted cell therapy. To highlight these advances, we review some of the recent developments that have been achieved for the regeneration of tissues, focusing on the articular cartilage, bone, cardiac, and neural tissues. These biohydrogels are associated with improved cartilage and bone defects regeneration, reduced left ventricular dilation upon myocardial infarction and display promising results repairing neural lesions. Combining the benefits from each of these areas reviewed above, we envision that an injectable biohydrogel foam loaded with either stem cells or their secretome is the most promising hydrogel solution to trigger tissue regeneration. A paradigm shift is occurring where the combined efforts of fundamental and applied sciences head toward the development of hydrogels restoring tissue functions, serving as drug screening platforms or recreating complex organs.

摘要

修复或替换受损的人体组织一直是再生医学 25 年来的宏伟目标。一种有前途的方法是使用水合的三维支架,称为水凝胶,在临床前试验中修复组织的效果很好。受益于生物学领域的突破性进展,特别是关于细胞/基质相互作用的进展,这些水凝胶现在被设计用来重现一些天然环境的基本线索,以驱动局部组织再生。我们强调了开发智能和仿生水凝胶所需的关键参数。我们还回顾了多年来开发的各种聚合物、交联方法和制造工艺。特别有趣的是超分子化学的出现,允许开发高度功能性和可还原的生物水凝胶。此外,计算机辅助设计和三维打印的进步彻底改变了大孔水凝胶的生产,并允许设计出比以往任何时候都更复杂的设计,并有机会开发完全重建的器官。如今,再生医学用生物水凝胶领域是一个多产的研究领域,适用于大多数身体组织。除了这些应用,可注射水凝胶和大孔水凝胶(泡沫)被发现是最成功的。虽然通常与细胞或生物制剂一起用作药物输送系统以提高治疗效果,但它们正稳步应用于器官芯片和水凝胶辅助细胞治疗等新兴领域。为了突出这些进展,我们回顾了一些最近在组织再生方面取得的进展,重点介绍了关节软骨、骨骼、心脏和神经组织。这些生物水凝胶与改善软骨和骨缺损再生、减少心肌梗死后左心室扩张以及修复神经损伤的有希望的结果有关。结合上述各个领域的优势,我们设想,一种注射用生物水凝胶泡沫,其中装载干细胞或其分泌组,是触发组织再生的最有前途的水凝胶解决方案。一种范式转变正在发生,基础科学和应用科学的共同努力正在朝着开发恢复组织功能的水凝胶、作为药物筛选平台或重现复杂器官的方向发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验