Cho Yongmin, Zhao Charles L, Lu Hang
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA.
Wiley Interdiscip Rev Syst Biol Med. 2017 May;9(3). doi: 10.1002/wsbm.1376. Epub 2017 Feb 21.
The nervous system of Caenorhabditis elegans is an important model system for understanding the development and function of larger, more complex nervous systems. It is prized for its ease of handling, rapid life cycle, and stereotyped, well-cataloged development, with the development of all 302 neurons mapped all the way from zygote to adult. The combination of easy genetic manipulation and optical transparency of the worm allows for the direct imaging of its interior with fluorescent microscopy, without physically compromising the normal physiology of the animal itself. By expressing fluorescent markers, biologists study many developmental and cell biology questions in vivo; by expressing genetically encoded fluorescent calcium indicators within neurons, it is also possible to monitor their dynamic activity, answering questions about the structure and function of neural microcircuitry in the worm. However, to successfully image the worm it is necessary to overcome a number of experimental challenges. It is necessary to hold worms within the field of view, collect images efficiently and rapidly, and robustly analyze the data obtained. In recent years, a trend has developed toward imaging a large number of worms or neurons simultaneously, directly exploiting the unique properties of C. elegans to acquire data on a scale, which is not possible in other organisms. Doing this has required the development of new experimental tools, techniques, and data analytic approaches, all of which come together to open new perspectives on the field of neurobiology in C. elegans, and neuroscience in general. WIREs Syst Biol Med 2017, 9:e1376. doi: 10.1002/wsbm.1376 For further resources related to this article, please visit the WIREs website.
秀丽隐杆线虫的神经系统是理解更大、更复杂神经系统的发育和功能的重要模型系统。它因其易于操作、生命周期短以及具有模式化、详尽记录的发育过程而备受珍视,从受精卵到成虫的整个发育过程中,所有302个神经元的发育情况都已绘制出来。线虫易于进行基因操作以及具有光学透明性,这使得利用荧光显微镜可以直接对其内部进行成像,而不会对动物本身的正常生理机能造成物理损害。通过表达荧光标记,生物学家可以在体内研究许多发育和细胞生物学问题;通过在神经元内表达基因编码的荧光钙指示剂,还能够监测它们的动态活动,从而回答有关线虫神经微回路结构和功能的问题。然而,要成功对线虫进行成像,有必要克服一些实验挑战。需要将线虫固定在视野范围内,高效快速地采集图像,并对获得的数据进行可靠的分析。近年来,出现了一种同时对大量线虫或神经元进行成像的趋势,直接利用秀丽隐杆线虫的独特特性来大规模获取数据,这在其他生物体中是不可能实现的。要做到这一点,需要开发新的实验工具、技术和数据分析方法,所有这些共同为秀丽隐杆线虫神经生物学领域以及整个神经科学领域开辟了新的视角。《WIREs系统生物学与医学》2017年第9期,e1376。doi:10.1002/wsbm.1376 有关本文的更多资源,请访问WIREs网站。