Singha Ratnadwip, Pariari Arnab Kumar, Satpati Biswarup, Mandal Prabhat
Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata 700 064, India.
Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata 700 064, India
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2468-2473. doi: 10.1073/pnas.1618004114. Epub 2017 Feb 21.
Whereas the discovery of Dirac- and Weyl-type excitations in electronic systems is a major breakthrough in recent condensed matter physics, finding appropriate materials for fundamental physics and technological applications is an experimental challenge. In all of the reported materials, linear dispersion survives only up to a few hundred millielectronvolts from the Dirac or Weyl nodes. On the other hand, real materials are subject to uncontrolled doping during preparation and thermal effect near room temperature can hinder the rich physics. In ZrSiS, angle-resolved photoemission spectroscopy measurements have shown an unusually robust linear dispersion (up to [Formula: see text]2 eV) with multiple nondegenerate Dirac nodes. In this context, we present the magnetotransport study on ZrSiS crystal, which represents a large family of materials ( with = Zr, Hf; = Si, Ge, Sn; = O, S, Se, Te) with identical band topology. Along with extremely large and nonsaturating magnetoresistance (MR), [Formula: see text]1.4 [Formula: see text] 10% at 2 K and 9 T, it shows strong anisotropy, depending on the direction of the magnetic field. Quantum oscillation and Hall effect measurements have revealed large hole and small electron Fermi pockets. A nontrivial [Formula: see text] Berry phase confirms the Dirac fermionic nature for both types of charge carriers. The long-sought relativistic phenomenon of massless Dirac fermions, known as the Adler-Bell-Jackiw chiral anomaly, has also been observed.
尽管在电子系统中发现狄拉克型和外尔型激发是近年来凝聚态物理的一项重大突破,但寻找适用于基础物理和技术应用的材料仍是一项实验挑战。在所有已报道的材料中,线性色散仅在距狄拉克或外尔点几百毫电子伏特的范围内存在。另一方面,实际材料在制备过程中会受到不受控制的掺杂影响,并且室温附近的热效应会阻碍丰富的物理现象。在ZrSiS中,角分辨光电子能谱测量显示出异常稳健的线性色散(高达2电子伏特)以及多个非简并狄拉克点。在此背景下,我们展示了对ZrSiS晶体的磁输运研究,该晶体代表了一大类具有相同能带拓扑结构的材料(其中X = Zr、Hf;Y = Si、Ge、Sn;Z = O、S、Se、Te)。除了在2 K和9 T时具有极大且不饱和的磁电阻(MR),即1.4×10%外,它还表现出强烈的各向异性,这取决于磁场方向。量子振荡和霍尔效应测量揭示了大的空穴费米口袋和小的电子费米口袋。一个非平凡的π Berry相证实了两种类型电荷载流子的狄拉克费米子性质。还观察到了长期以来寻找的无质量狄拉克费米子的相对论现象,即阿德勒 - 贝尔 - 贾基手征反常。