Xu Juan, Ma Chaojie, Cao Jianyu, Chen Zhidong
School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China.
Dalton Trans. 2017 Mar 7;46(10):3276-3283. doi: 10.1039/c6dt04759a.
Core-shell nanostructured hollow carbon nanospheres@nickel cobalt double hydroxides (HCNs@NiCo-LDH) were fabricated using a facile hydrothermal method and investigated as high-performance electrode materials for supercapacitors. HCNs were acquired by a successive polymerization, carbonization and etching process, which was subsequently wrapped by ultrathin NiCo-LDH nanosheets. The HCNs@NiCo-LDH electrode achieved a high specific capacitance (2558 F g at 1 A g) and outstanding rate capability with 74.9% capacitance retention after a 20-fold increase in current density. Capacitances of 2405, 2310, 2168, 2006 and 1916 F g can be achieved at rates of 3, 5, 10, 15 and 20 A g, respectively, which are much higher than the specific capacitances of most reported carbon loaded NiCo-LDH. Specifically, the assembled HCNs@NiCo-LDH//graphene asymmetric supercapacitor displayed distinguished capacitive behaviors with a prominent specific capacitance of 172.8 F g and eminent cycling stability with 93.5% capacitance retention after 3000 cycles. These remarkable electrochemical properties indicate that the unique HCNs@NiCo-LDH core-shell electrode is highly promising for application in energy storage fields.
采用简便的水热法制备了核壳纳米结构的中空碳纳米球@镍钴双氢氧化物(HCNs@NiCo-LDH),并将其作为超级电容器的高性能电极材料进行了研究。HCNs通过连续的聚合、碳化和蚀刻过程获得,随后被超薄的NiCo-LDH纳米片包裹。HCNs@NiCo-LDH电极实现了高比电容(在1 A g时为2558 F g)和出色的倍率性能,在电流密度增加20倍后电容保持率为74.9%。在3、5、10、15和20 A g的倍率下,分别可实现2405、2310、2168、2006和1916 F g的电容,远高于大多数报道的碳负载NiCo-LDH的比电容。具体而言,组装的HCNs@NiCo-LDH//石墨烯不对称超级电容器表现出卓越的电容行为,比电容高达172.8 F g,在3000次循环后具有93.5%的电容保持率,循环稳定性优异。这些显著的电化学性能表明,独特的HCNs@NiCo-LDH核壳电极在储能领域具有广阔的应用前景。