COMP CoE at the Department of Applied Physics, Aalto University School of Science, P.O. Box 11000, FIN-00076 Aalto, Espoo, Finland.
Varian Medical Systems Finland, Paciuksenkatu 21, 00270 Helsinki, Finland.
Soft Matter. 2017 Mar 15;13(11):2148-2154. doi: 10.1039/c6sm02437h.
Controlling the motion of nano and microscale objects in a fluid environment is a key factor in designing optimized tiny machines that perform mechanical tasks such as transport of drugs or genetic material in cells, fluid mixing to accelerate chemical reactions, and cargo transport in microfluidic chips. Directed motion is made possible by the coupled translational and rotational motion of asymmetric particles. A current challenge in achieving directed and controlled motion at the nanoscale lies in overcoming random Brownian motion due to thermal fluctuations in the fluid. We use a hybrid lattice-Boltzmann molecular dynamics method with full hydrodynamic interactions and thermal fluctuations to demonstrate that controlled propulsion of individual nanohelices in an aqueous environment is possible. We optimize the propulsion velocity and the efficiency of externally driven nanohelices. We quantify the importance of the thermal effects on the directed motion by calculating the Péclet number for various shapes, number of turns and pitch lengths of the helices. Consistent with the experimental microscale separation of chiral objects, our results indicate that in the presence of thermal fluctuations at Péclet numbers >10, chiral particles follow the direction of propagation according to its handedness and the direction of the applied torque making separation of chiral particles possible at the nanoscale. Our results provide criteria for the design and control of helical machines at the nanoscale.
在流体环境中控制纳米和微尺度物体的运动是设计优化微小机器的关键因素,这些微小机器可以执行机械任务,如在细胞中运输药物或遗传物质、加速化学反应的流体混合以及在微流控芯片中运输货物。不对称粒子的耦合平移和旋转运动使得定向运动成为可能。在纳米尺度上实现定向和控制运动的当前挑战在于克服由于流体中的热波动引起的随机布朗运动。我们使用具有全流体动力学相互作用和热波动的混合晶格玻尔兹曼分子动力学方法来证明在水相环境中单个纳米螺旋的受控推进是可能的。我们优化了外部驱动纳米螺旋的推进速度和效率。我们通过计算不同形状、匝数和螺旋螺距的螺旋的 Peclet 数,来量化热效应对定向运动的重要性。与实验微尺度手性物体的分离一致,我们的结果表明,在 Peclet 数>10 时存在热波动的情况下,手性粒子根据其手性和施加扭矩的方向沿传播方向运动,从而在手性粒子在纳米尺度上实现分离成为可能。我们的结果为纳米尺度螺旋机器的设计和控制提供了标准。