Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ 85287.
School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287.
Proc Natl Acad Sci U S A. 2023 May 30;120(22):e2220033120. doi: 10.1073/pnas.2220033120. Epub 2023 May 26.
The complex motility of bacteria, ranging from single-swimmer behaviors such as chemotaxis to collective dynamics, including biofilm formation and active matter phenomena, is driven by their microscale propellers. Despite extensive study of swimming flagellated bacteria, the hydrodynamic properties of their helical-shaped propellers have never been directly measured. The primary challenges to directly studying microscale propellers are 1) their small size and fast, correlated motion, 2) the necessity of controlling fluid flow at the microscale, and 3) isolating the influence of a single propeller from a propeller bundle. To solve the outstanding problem of characterizing the hydrodynamic properties of these propellers, we adopt a dual statistical viewpoint that connects to the hydrodynamics through the fluctuation-dissipation theorem (FDT). We regard the propellers as colloidal particles and characterize their Brownian fluctuations, described by 21 diffusion coefficients for translation, rotation, and correlated translation-rotation in a static fluid. To perform this measurement, we applied recent advances in high-resolution oblique plane microscopy to generate high-speed volumetric movies of fluorophore-labeled, freely diffusing flagella. Analyzing these movies with a bespoke helical single-particle tracking algorithm, we extracted trajectories, calculated the full set of diffusion coefficients, and inferred the average propulsion matrix using a generalized Einstein relation. Our results provide a direct measurement of a microhelix's propulsion matrix and validate proposals that the flagella are highly inefficient propellers, with a maximum propulsion efficiency of less than 3%. Our approach opens broad avenues for studying the motility of particles in complex environments where direct hydrodynamic approaches are not feasible.
细菌的复杂运动行为范围广泛,从单个游泳者的行为(如趋化性)到集体动力学,包括生物膜形成和活性物质现象,这些运动行为都由它们的微观螺旋桨驱动。尽管对游动鞭毛细菌进行了广泛的研究,但它们螺旋形螺旋桨的流体动力学特性从未被直接测量过。直接研究微观螺旋桨的主要挑战是:1)它们的尺寸小且运动相关性强,2)需要在微观尺度上控制流体流动,3)将单个螺旋桨的影响与螺旋桨束隔离。为了解决表征这些螺旋桨的流体动力学特性的突出问题,我们采用了一种双重统计观点,通过波动耗散定理(FDT)将其与流体动力学联系起来。我们将螺旋桨视为胶体颗粒,并描述了它们在静态流体中的布朗运动波动,由 21 个平移、旋转和相关平移-旋转的扩散系数来描述。为了进行这项测量,我们应用了高分辨率倾斜平面显微镜的最新进展,生成了标记有荧光染料的、自由扩散的鞭毛的高速体积电影。我们使用专门的螺旋单颗粒跟踪算法分析这些电影,提取轨迹,计算全套扩散系数,并使用广义爱因斯坦关系推断平均推进矩阵。我们的结果提供了微观螺旋桨推进矩阵的直接测量,并验证了这样的建议,即鞭毛是效率非常低的推进器,最大推进效率小于 3%。我们的方法为研究复杂环境中颗粒的运动开辟了广阔的途径,在这些复杂环境中,直接的流体动力学方法是不可行的。