Suppr超能文献

受限条件下磁性螺旋纳米游动体的非斯托克斯动力学

Non-Stokesian dynamics of magnetic helical nanoswimmers under confinement.

作者信息

Fazeli Alireza, Thakore Vaibhav, Ala-Nissila Tapio, Karttunen Mikko

机构信息

Department of Mathematics, Western University, London, ON N6A 5B7, Canada.

Center for Advanced Materials and Biomaterials Research, Western University, London, ON N6A 5B7, Canada.

出版信息

PNAS Nexus. 2024 Apr 26;3(5):pgae182. doi: 10.1093/pnasnexus/pgae182. eCollection 2024 May.

Abstract

Electromagnetically propelled helical nanoswimmers offer great potential for nanorobotic applications. Here, the effect of confinement on their propulsion is characterized using lattice-Boltzmann simulations. Two principal mechanisms give rise to their forward motion under confinement: (i) pure swimming and (ii) the thrust created by the differential pressure due to confinement. Under strong confinement, they face greater rotational drag but display a faster propulsion for fixed driving frequency in agreement with experimental findings. This is due to the increased differential pressure created by the boundary walls when they are sufficiently close to each other and the particle. We have proposed two analytical relations (i) for predicting the swimming speed of an unconfined particle as a function of its angular speed and geometrical properties, and (ii) an empirical expression to accurately predict the propulsion speed of a confined swimmer as a function of the degree of confinement and its unconfined swimming speed. At low driving frequencies and degrees of confinement, the systems retain the expected linear behavior consistent with the predictions of the Stokes equation. However, as the driving frequency and/or the degree of confinement increase, their impact on propulsion leads to increasing deviations from the Stokesian regime and emergence of nonlinear behavior.

摘要

电磁驱动的螺旋纳米游动器在纳米机器人应用中具有巨大潜力。在此,利用格子玻尔兹曼模拟来表征限制对其推进的影响。有两种主要机制导致它们在受限情况下向前运动:(i)纯游动和(ii)由限制引起的压差产生的推力。在强限制条件下,它们面临更大的旋转阻力,但在固定驱动频率下表现出更快的推进速度,这与实验结果一致。这是由于当边界壁彼此以及与粒子足够接近时,由边界壁产生的压差增加。我们提出了两个解析关系:(i)用于预测无限制粒子的游动速度作为其角速度和几何特性的函数,以及(ii)一个经验表达式,以准确预测受限游动器的推进速度作为限制程度及其无限制游动速度的函数。在低驱动频率和低限制程度下,系统保持与斯托克斯方程预测一致的预期线性行为。然而,随着驱动频率和/或限制程度增加,它们对推进的影响导致与斯托克斯 regime 的偏差增加以及非线性行为的出现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0186/11102084/4a2f0f1b6b92/pgae182f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验