Rishishwar Lavanya, Wang Lu, Clayton Evan A, Mariño-Ramírez Leonardo, McDonald John F, Jordan I King
School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; PanAmerican Bioinformatics Institute, Cali, Colombia; Applied Bioinformatics Laboratory, Atlanta, GA, USA.
School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; PanAmerican Bioinformatics Institute, Cali, Colombia.
Mob Genet Elements. 2017 Jan 11;7(1):1-20. doi: 10.1080/2159256X.2017.1280116. eCollection 2017.
Recent technological developments-in genomics, bioinformatics and high-throughput experimental techniques-are providing opportunities to study ongoing human transposable element (TE) activity at an unprecedented level of detail. It is now possible to characterize genome-wide collections of TE insertion sites for multiple human individuals, within and between populations, and for a variety of tissue types. Comparison of TE insertion site profiles between individuals captures the germline activity of TEs and reveals insertion site variants that segregate as polymorphisms among human populations, whereas comparison among tissue types ascertains somatic TE activity that generates cellular heterogeneity. In this review, we provide an overview of these new technologies and explore their implications for population and clinical genetic studies of human TEs. We cover both recent published results on human TE insertion activity as well as the prospects for future TE studies related to human evolution and health.
近期在基因组学、生物信息学和高通量实验技术方面的技术发展,正以前所未有的详细程度为研究人类转座元件(TE)的持续活动提供机会。现在有可能对多个人类个体、群体内部和群体之间以及各种组织类型的TE插入位点进行全基因组层面的特征描述。个体之间TE插入位点图谱的比较能够捕捉TE的种系活性,并揭示作为人类群体多态性而分离的插入位点变体,而组织类型之间的比较则可确定产生细胞异质性的体细胞TE活性。在本综述中,我们概述了这些新技术,并探讨它们对人类TE的群体和临床遗传学研究的影响。我们既涵盖了关于人类TE插入活性的近期已发表结果,也涉及了与人类进化和健康相关的未来TE研究前景。