Suppr超能文献

倾向得分匹配:回顾性随机化?

Propensity Score Matching: Retrospective Randomization?

作者信息

Jupiter Daniel C

机构信息

Assistant Professor, Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX.

出版信息

J Foot Ankle Surg. 2017 Mar-Apr;56(2):417-420. doi: 10.1053/j.jfas.2017.01.013.

Abstract

Randomized controlled trials are viewed as the optimal study design. In this commentary, we explore the strength of this design and its complexity. We also discuss some situations in which these trials are not possible, or not ethical, or not economical. In such situations, specifically, in retrospective studies, we should make every effort to recapitulate the rigor and strength of the randomized trial. However, we could be faced with an inherent indication bias in such a setting. Thus, we consider the tools available to address that bias. Specifically, we examine matching and introduce and explore a new tool: propensity score matching. This tool allows us to group subjects according to their propensity to be in a particular treatment group and, in so doing, to account for the indication bias.

摘要

随机对照试验被视为最佳的研究设计。在这篇评论中,我们探讨了这种设计的优势及其复杂性。我们还讨论了一些情况下这些试验不可行、不符合伦理或不经济的情况。具体而言,在回顾性研究中,我们应尽一切努力重现随机试验的严谨性和优势。然而,在这种情况下我们可能会面临内在的指征性偏倚。因此,我们考虑可用的工具来解决这种偏倚。具体来说,我们研究匹配,并介绍和探索一种新工具:倾向评分匹配。这个工具使我们能够根据受试者进入特定治疗组的倾向对他们进行分组,从而解决指征性偏倚。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验