Suppr超能文献

随机临床试验中的倾向评分匹配

Propensity score matching in randomized clinical trials.

作者信息

Xu Zhenzhen, Kalbfleisch John D

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, Michighan 48109, USA.

出版信息

Biometrics. 2010 Sep;66(3):813-23. doi: 10.1111/j.1541-0420.2009.01364.x.

Abstract

Cluster randomization trials with relatively few clusters have been widely used in recent years for evaluation of health-care strategies. On average, randomized treatment assignment achieves balance in both known and unknown confounding factors between treatment groups, however, in practice investigators can only introduce a small amount of stratification and cannot balance on all the important variables simultaneously. The limitation arises especially when there are many confounding variables in small studies. Such is the case in the INSTINCT trial designed to investigate the effectiveness of an education program in enhancing the tPA use in stroke patients. In this article, we introduce a new randomization design, the balance match weighted (BMW) design, which applies the optimal matching with constraints technique to a prospective randomized design and aims to minimize the mean squared error (MSE) of the treatment effect estimator. A simulation study shows that, under various confounding scenarios, the BMW design can yield substantial reductions in the MSE for the treatment effect estimator compared to a completely randomized or matched-pair design. The BMW design is also compared with a model-based approach adjusting for the estimated propensity score and Robins-Mark-Newey E-estimation procedure in terms of efficiency and robustness of the treatment effect estimator. These investigations suggest that the BMW design is more robust and usually, although not always, more efficient than either of the approaches. The design is also seen to be robust against heterogeneous error. We illustrate these methods in proposing a design for the INSTINCT trial.

摘要

近年来,聚类数量相对较少的整群随机试验被广泛用于评估医疗保健策略。平均而言,随机治疗分配能使治疗组之间已知和未知的混杂因素达到平衡,然而在实际中,研究人员只能引入少量分层,无法同时平衡所有重要变量。这种局限性尤其在小型研究中有许多混杂变量时出现。旨在研究一项教育计划在提高中风患者tPA使用有效性的INSTINCT试验就是这种情况。在本文中,我们介绍一种新的随机化设计,即平衡匹配加权(BMW)设计,它将带约束的最优匹配技术应用于前瞻性随机设计,旨在最小化治疗效果估计量的均方误差(MSE)。一项模拟研究表明,在各种混杂情况下,与完全随机设计或配对设计相比,BMW设计可使治疗效果估计量的MSE大幅降低。在治疗效果估计量的效率和稳健性方面,还将BMW设计与基于模型的倾向得分调整方法以及罗宾斯 - 马克 - 纽韦E估计程序进行了比较。这些研究表明,BMW设计比这两种方法中的任何一种都更稳健,并且通常(尽管并非总是)更有效。该设计还被认为对异质性误差具有稳健性。我们在为INSTINCT试验提出设计方案时对这些方法进行了说明。

相似文献

1
Propensity score matching in randomized clinical trials.
Biometrics. 2010 Sep;66(3):813-23. doi: 10.1111/j.1541-0420.2009.01364.x.
2
Repeated randomization and matching in multi-arm trials.
Biometrics. 2013 Dec;69(4):949-59. doi: 10.1111/biom.12077. Epub 2013 Oct 17.
4
Model misspecification and robustness in causal inference: comparing matching with doubly robust estimation.
Stat Med. 2012 Jul 10;31(15):1572-81. doi: 10.1002/sim.4496. Epub 2012 Feb 23.
5
Overview of the epidemiology methods and applications: strengths and limitations of observational study designs.
Crit Rev Food Sci Nutr. 2010;50 Suppl 1(s1):10-2. doi: 10.1080/10408398.2010.526838.
6
Matching by propensity score in cohort studies with three treatment groups.
Epidemiology. 2013 May;24(3):401-9. doi: 10.1097/EDE.0b013e318289dedf.
8
The use of propensity scores and observational data to estimate randomized controlled trial generalizability bias.
Stat Med. 2013 Sep 10;32(20):3552-68. doi: 10.1002/sim.5802. Epub 2013 Apr 1.
9
Propensity Score Matching: Retrospective Randomization?
J Foot Ankle Surg. 2017 Mar-Apr;56(2):417-420. doi: 10.1053/j.jfas.2017.01.013.
10
When should matching be used in the design of cluster randomized trials?
Stat Med. 2021 Nov 20;40(26):5765-5778. doi: 10.1002/sim.9152. Epub 2021 Aug 14.

引用本文的文献

1
Training to Move an Evidence-based Dementia Caregiver Support Program into Practice: A pragmatic, randomized, non-inferiority trial protocol.
Contemp Clin Trials Commun. 2025 Apr 5;45:101478. doi: 10.1016/j.conctc.2025.101478. eCollection 2025 Jun.
4
Can a propensity score matching method be applied to assessing efficacy from single-arm proof-of-concept trials in oncology?
CPT Pharmacometrics Syst Pharmacol. 2023 Sep;12(9):1347-1357. doi: 10.1002/psp4.13014. Epub 2023 Aug 4.
6
Real-Time Risk Tool for Pharmacy Interventions.
Hosp Pharm. 2022 Feb;57(1):52-60. doi: 10.1177/0018578720973884. Epub 2020 Nov 25.
7
Application of randomization techniques for balancing site covariates in the adult day service plus pragmatic cluster-randomized trial.
Contemp Clin Trials Commun. 2020 Sep;19:100628. doi: 10.1016/j.conctc.2020.100628. Epub 2020 Jul 28.
9
Evaluation of vitamin D plasma levels after mild exposure to the sun with photoprotection.
An Bras Dermatol. 2019 Jan-Feb;94(1):56-61. doi: 10.1590/abd1806-4841.20198070.

本文引用的文献

1
Optimal multivariate matching before randomization.
Biostatistics. 2004 Apr;5(2):263-75. doi: 10.1093/biostatistics/5.2.263.
2
Substantial gains in bias reduction from matching with a variable number of controls.
Biometrics. 2000 Mar;56(1):118-24. doi: 10.1111/j.0006-341x.2000.00118.x.
3
Invited commentary: propensity scores.
Am J Epidemiol. 1999 Aug 15;150(4):327-33. doi: 10.1093/oxfordjournals.aje.a010011.
5
Tissue plasminogen activator for acute ischemic stroke.
N Engl J Med. 1995 Dec 14;333(24):1581-7. doi: 10.1056/NEJM199512143332401.
7
The impact of vitamin A supplementation on morbidity: a randomized community intervention trial.
Am J Public Health. 1991 Dec;81(12):1654-6. doi: 10.2105/ajph.81.12.1654.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验