Suppr超能文献

人类西尼罗河病毒病例和蚊子感染率的综合预测。

Ensemble forecast of human West Nile virus cases and mosquito infection rates.

机构信息

Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA.

Arthropod-Borne Disease Laboratory, Suffolk County Department of Health Services, Yaphank, New York 11980, USA.

出版信息

Nat Commun. 2017 Feb 24;8:14592. doi: 10.1038/ncomms14592.

Abstract

West Nile virus (WNV) is now endemic in the continental United States; however, our ability to predict spillover transmission risk and human WNV cases remains limited. Here we develop a model depicting WNV transmission dynamics, which we optimize using a data assimilation method and two observed data streams, mosquito infection rates and reported human WNV cases. The coupled model-inference framework is then used to generate retrospective ensemble forecasts of historical WNV outbreaks in Long Island, New York for 2001-2014. Accurate forecasts of mosquito infection rates are generated before peak infection, and >65% of forecasts accurately predict seasonal total human WNV cases up to 9 weeks before the past reported case. This work provides the foundation for implementation of a statistically rigorous system for real-time forecast of seasonal outbreaks of WNV.

摘要

西尼罗河病毒(WNV)目前在美国大陆流行;然而,我们预测溢出传播风险和人类 WNV 病例的能力仍然有限。在这里,我们开发了一个描述 WNV 传播动态的模型,我们使用数据同化方法和两个观测数据流(蚊子感染率和报告的人类 WNV 病例)对其进行了优化。然后,使用耦合模型推断框架对 2001 年至 2014 年期间纽约长岛的历史 WNV 暴发进行回溯集合预测。在高峰期前准确预测蚊子感染率,并在过去报告病例之前,超过 65%的预测能够准确预测 9 周内的季节性总人类 WNV 病例。这项工作为实施一种统计严谨的实时预测季节性 WNV 暴发的系统奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0608/5333106/db4f18159734/ncomms14592-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验