Suppr超能文献

耳石功能障碍会改变小鼠的探索行为。

Otolith dysfunction alters exploratory movement in mice.

作者信息

Blankenship Philip A, Cherep Lucia A, Donaldson Tia N, Brockman Sarah N, Trainer Alexandria D, Yoder Ryan M, Wallace Douglas G

机构信息

Dept of Psychology, NIU, DeKalb, IL, 60115, United States.

Dept of Psychology, IPFW, Fort Wayne, IN, 46805, United States.

出版信息

Behav Brain Res. 2017 May 15;325(Pt A):1-11. doi: 10.1016/j.bbr.2017.02.031. Epub 2017 Feb 21.

Abstract

The organization of rodent exploratory behavior appears to depend on self-movement cue processing. As of yet, however, no studies have directly examined the vestibular system's contribution to the organization of exploratory movement. The current study sequentially segmented open field behavior into progressions and stops in order to characterize differences in movement organization between control and otoconia-deficient tilted mice under conditions with and without access to visual cues. Under completely dark conditions, tilted mice exhibited similar distance traveled and stop times overall, but had significantly more circuitous progressions, larger changes in heading between progressions, and less stable clustering of home bases, relative to control mice. In light conditions, control and tilted mice were similar on all measures except for the change in heading between progressions. This pattern of results is consistent with otoconia-deficient tilted mice using visual cues to compensate for impaired self-movement cue processing. This work provides the first empirical evidence that signals from the otolithic organs mediate the organization of exploratory behavior, based on a novel assessment of spatial orientation.

摘要

啮齿动物探索行为的组织似乎依赖于自我运动线索处理。然而,截至目前,尚无研究直接考察前庭系统对探索性运动组织的贡献。当前研究将旷场行为依次划分为行进和停顿,以表征在有视觉线索和无视觉线索条件下,对照小鼠和耳石缺失倾斜小鼠在运动组织上的差异。在完全黑暗的条件下,倾斜小鼠总体上表现出相似的行进距离和停顿时间,但相对于对照小鼠,它们有更多迂回的行进、行进间更大的航向变化以及不太稳定的巢穴聚集。在有光条件下,对照小鼠和倾斜小鼠在所有指标上都相似,除了行进间的航向变化。这种结果模式与耳石缺失倾斜小鼠利用视觉线索来补偿受损的自我运动线索处理一致。这项工作基于对空间定向的新评估,提供了首个实证证据,表明来自耳石器官的信号介导了探索行为的组织。

相似文献

1
Otolith dysfunction alters exploratory movement in mice.
Behav Brain Res. 2017 May 15;325(Pt A):1-11. doi: 10.1016/j.bbr.2017.02.031. Epub 2017 Feb 21.
2
Otolithic information is required for homing in the mouse.
Hippocampus. 2015 Aug;25(8):890-9. doi: 10.1002/hipo.22410. Epub 2015 Jan 20.
3
Progression and stop organization reveals conservation of movement organization during dark exploration across rats and mice.
Behav Processes. 2019 May;162:29-38. doi: 10.1016/j.beproc.2019.01.003. Epub 2019 Jan 23.
4
Linear Self-Motion Cues Support the Spatial Distribution and Stability of Hippocampal Place Cells.
Curr Biol. 2018 Jun 4;28(11):1803-1810.e5. doi: 10.1016/j.cub.2018.04.034. Epub 2018 May 17.
5
Medial septum lesions disrupt exploratory trip organization: evidence for septohippocampal involvement in dead reckoning.
Physiol Behav. 2007 Feb 28;90(2-3):412-24. doi: 10.1016/j.physbeh.2006.10.007. Epub 2006 Nov 28.
6
Effects of acquired vestibular pathology on the organization of mouse exploratory behavior.
Exp Brain Res. 2021 Apr;239(4):1125-1139. doi: 10.1007/s00221-020-06032-1. Epub 2021 Feb 8.
7
Organization of exploratory behavior under dark conditions in female and male rats.
Behav Processes. 2021 Aug;189:104437. doi: 10.1016/j.beproc.2021.104437. Epub 2021 Jun 2.
8
The medial frontal cortex contributes to but does not organize rat exploratory behavior.
Neuroscience. 2016 Nov 12;336:1-11. doi: 10.1016/j.neuroscience.2016.08.041. Epub 2016 Aug 31.
9
Differential organization of open field behavior in mice following acute or chronic simulated GCR exposure.
Behav Brain Res. 2022 Jan 7;416:113577. doi: 10.1016/j.bbr.2021.113577. Epub 2021 Sep 8.
10
Movement characteristics support a role for dead reckoning in organizing exploratory behavior.
Anim Cogn. 2006 Jul;9(3):219-28. doi: 10.1007/s10071-006-0023-x. Epub 2006 May 24.

引用本文的文献

1
Task demands influence search strategy selection in otoconia-deficient mice.
Front Neurol. 2025 Apr 28;16:1531705. doi: 10.3389/fneur.2025.1531705. eCollection 2025.
2
Animal studies linking the vestibular system and memory: Aotearoa/New Zealand's contribution.
J R Soc N Z. 2024 Oct 14;55(3):424-440. doi: 10.1080/03036758.2024.2412085. eCollection 2025.
3
5
Cue polarization and representation in mouse home base behaviors.
Anim Cogn. 2023 Jun;26(3):861-883. doi: 10.1007/s10071-022-01729-y. Epub 2022 Dec 9.
6
Under or Absent Reporting of Light Stimuli in Testing of Anxiety-Like Behaviors in Rodents: The Need for Standardization.
Front Mol Neurosci. 2022 Aug 17;15:912146. doi: 10.3389/fnmol.2022.912146. eCollection 2022.
7
Age-related changes in the organization of spontaneously occurring behaviors.
Behav Processes. 2022 Sep;201:104713. doi: 10.1016/j.beproc.2022.104713. Epub 2022 Jul 25.
8
Effects of acquired vestibular pathology on the organization of mouse exploratory behavior.
Exp Brain Res. 2021 Apr;239(4):1125-1139. doi: 10.1007/s00221-020-06032-1. Epub 2021 Feb 8.
9
The Growing Evidence for the Importance of the Otoliths in Spatial Memory.
Front Neural Circuits. 2019 Oct 18;13:66. doi: 10.3389/fncir.2019.00066. eCollection 2019.
10
Bilateral postsubiculum lesions impair visual and nonvisual homing performance in rats.
Behav Neurosci. 2019 Oct;133(5):496-507. doi: 10.1037/bne0000321. Epub 2019 Jun 6.

本文引用的文献

1
Gravity orientation tuning in macaque anterior thalamus.
Nat Neurosci. 2016 Dec;19(12):1566-1568. doi: 10.1038/nn.4423. Epub 2016 Oct 24.
2
The medial frontal cortex contributes to but does not organize rat exploratory behavior.
Neuroscience. 2016 Nov 12;336:1-11. doi: 10.1016/j.neuroscience.2016.08.041. Epub 2016 Aug 31.
3
Mice Develop Efficient Strategies for Foraging and Navigation Using Complex Natural Stimuli.
Curr Biol. 2016 May 23;26(10):1261-73. doi: 10.1016/j.cub.2016.03.040. Epub 2016 Apr 21.
4
Head Direction Cell Activity Is Absent in Mice without the Horizontal Semicircular Canals.
J Neurosci. 2016 Jan 20;36(3):741-54. doi: 10.1523/JNEUROSCI.3790-14.2016.
5
Cholinergic deafferentation of the hippocampus causes non-temporally graded retrograde amnesia in an odor discrimination task.
Behav Brain Res. 2016 Feb 15;299:97-104. doi: 10.1016/j.bbr.2015.11.021. Epub 2015 Dec 2.
6
Otolithic information is required for homing in the mouse.
Hippocampus. 2015 Aug;25(8):890-9. doi: 10.1002/hipo.22410. Epub 2015 Jan 20.
7
Otoconia-deficient mice show selective spatial deficits.
Hippocampus. 2014 Oct;24(10):1169-77. doi: 10.1002/hipo.22300. Epub 2014 May 15.
8
The vestibular contribution to the head direction signal and navigation.
Front Integr Neurosci. 2014 Apr 22;8:32. doi: 10.3389/fnint.2014.00032. eCollection 2014.
9
Limbic system structures differentially contribute to exploratory trip organization of the rat.
Hippocampus. 2013 Feb;23(2):139-52. doi: 10.1002/hipo.22075. Epub 2012 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验