Lok Judith J, Yang Shu, Sharkey Brian, Hughes Michael D
Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA.
Department of Statistics, North Carolina State University, Raleigh, NC, USA.
Lifetime Data Anal. 2018 Apr;24(2):201-223. doi: 10.1007/s10985-017-9393-4. Epub 2017 Feb 25.
Competing risks occur in a time-to-event analysis in which a patient can experience one of several types of events. Traditional methods for handling competing risks data presuppose one censoring process, which is assumed to be independent. In a controlled clinical trial, censoring can occur for several reasons: some independent, others dependent. We propose an estimator of the cumulative incidence function in the presence of both independent and dependent censoring mechanisms. We rely on semi-parametric theory to derive an augmented inverse probability of censoring weighted (AIPCW) estimator. We demonstrate the efficiency gained when using the AIPCW estimator compared to a non-augmented estimator via simulations. We then apply our method to evaluate the safety and efficacy of three anti-HIV regimens in a randomized trial conducted by the AIDS Clinical Trial Group, ACTG A5095.
在生存分析中会出现竞争风险,即患者可能经历多种类型事件中的一种。处理竞争风险数据的传统方法预先假定了一种删失过程,且假定该过程是独立的。在对照临床试验中,删失可能有多种原因:有些是独立的,有些是相关的。我们提出了一种在存在独立和相关删失机制情况下的累积发病率函数估计器。我们依靠半参数理论推导出一种增强的逆概率删失加权(AIPCW)估计器。通过模拟,我们证明了与非增强估计器相比,使用AIPCW估计器所获得的效率。然后,我们将我们的方法应用于评估艾滋病临床试验组(ACTG)A5095进行的一项随机试验中三种抗HIV治疗方案的安全性和有效性。