Suppr超能文献

用于神经元 - 微电极连接非线性建模的系统识别技术的比较分析。

Comparative analysis of system identification techniques for nonlinear modeling of the neuron-microelectrode junction.

作者信息

Khan Saad Ahmad, Thakore Vaibhav, Behal Aman, Bölöni Ladislau, Hickman James J

机构信息

Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando FL, 32826, USA.

Department of Physics, University of Central Florida, Orlando FL, 32826, USA; Nanoscience Technology Center, University of Central Florida, Orlando FL, 32826, USA.

出版信息

J Comput Theor Nanosci. 2013 Mar;10(3):573-580. doi: 10.1166/jctn.2013.2736.

Abstract

Applications of non-invasive neuroelectronic interfacing in the fields of whole-cell biosensing, biological computation and neural prosthetic devices depend critically on an efficient decoding and processing of information retrieved from a neuron-electrode junction. This necessitates development of mathematical models of the neuron-electrode interface that realistically represent the extracellular signals recorded at the neuroelectronic junction without being computationally expensive. Extracellular signals recorded using planar microelectrode or field effect transistor arrays have, until now, primarily been represented using linear equivalent circuit models that fail to reproduce the correct amplitude and shape of the signals recorded at the neuron-microelectrode interface. In this paper, to explore viable alternatives for a computationally inexpensive and efficient modeling of the neuron-electrode junction, input-output data from the neuron-electrode junction is modeled using a parametric Wiener model and a Nonlinear Auto-Regressive network with eXogenous input trained using a dynamic Neural Network model (NARX-NN model). Results corresponding to a validation dataset from these models are then employed to compare and contrast the computational complexity and efficiency of the aforementioned modeling techniques with the Lee-Schetzen technique of cross-correlation for estimating a nonlinear dynamic model of the neuroelectronic junction.

摘要

非侵入性神经电子接口在全细胞生物传感、生物计算和神经假体装置领域的应用,严重依赖于从神经元-电极连接处获取的信息的有效解码和处理。这就需要开发神经元-电极界面的数学模型,该模型要能真实地表示在神经电子连接处记录的细胞外信号,同时计算成本又不高。到目前为止,使用平面微电极或场效应晶体管阵列记录的细胞外信号,主要是用线性等效电路模型来表示的,而这些模型无法再现神经元-微电极界面记录的信号的正确幅度和形状。在本文中,为了探索对神经元-电极连接处进行计算成本低且高效建模的可行替代方法,使用参数维纳模型和具有外部输入的非线性自回归网络对神经元-电极连接处的输入-输出数据进行建模,该网络使用动态神经网络模型(NARX-NN模型)进行训练。然后,将这些模型对应验证数据集的结果用于比较和对比上述建模技术与用于估计神经电子连接处非线性动态模型的李-谢岑互相关技术的计算复杂度和效率。

相似文献

9
Computational capabilities of recurrent NARX neural networks.递归NARX神经网络的计算能力。
IEEE Trans Syst Man Cybern B Cybern. 1997;27(2):208-15. doi: 10.1109/3477.558801.
10
A Soft, High-Density Neuroelectronic Array.一种柔软的高密度神经电子阵列。
Npj Flex Electron. 2023;7(1). doi: 10.1038/s41528-023-00271-2. Epub 2023 Aug 22.

本文引用的文献

6
Solution of the Poisson-Nernst-Planck equations in the cell-substrate interface.细胞-基底界面处泊松-能斯特-普朗克方程的解
Eur Phys J E Soft Matter. 2007 Sep;24(1):1-8. doi: 10.1140/epje/i2007-10204-6. Epub 2007 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验