Suppr超能文献

大麦(1→3,1→4)-β-葡聚糖内切水解酶的变异性揭示了具有更高热稳定性的新型同工酶。

Variation in barley (1 → 3, 1 → 4)-β-glucan endohydrolases reveals novel allozymes with increased thermostability.

机构信息

School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA, 5064, Australia.

Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA, 5064, Australia.

出版信息

Theor Appl Genet. 2017 May;130(5):1053-1063. doi: 10.1007/s00122-017-2870-z. Epub 2017 Feb 26.

Abstract

Novel barley (1 → 3, 1 → 4)-β-glucan endohydrolases with increased thermostability. Rapid and reliable degradation of (1 → 3, 1 → 4)-β-glucan to produce low viscosity wort is an essential requirement for malting barley. The (1 → 3, 1 → 4)-β-glucan endohyrolases are responsible for the primary hydrolysis of cell wall β-glucan. The variation in β-glucanase genes HvGlb1 and HvGlb2 that encode EI and EII, respectively, were examined in elite and exotic germplasm. Six EI and 14 EII allozymes were identified, and significant variation was found in β-glucanase from Hordeum vulgare ssp. spontaneum (wild barley), the progenitor of modern cultivated barley. Allozymes were examined using prediction methods; the change in Gibbs free energy of the identified amino acid substitutions to predict changes in enzyme stability and homology modelling to examine the structure of the novel allozymes using the existing solved EII structure. Two EI and four EII allozymes in wild barley accessions were predicted to have improved barley β-glucanase thermostability. One novel EII candidate was identified in existing backcross lines with contrasting HvGlb2 alleles from wild barley and cv Flagship. The contrasting alleles in selected near isogenic lines were examined in β-glucanase thermostability analyses. The EII from wild barley exhibited a significant increase in β-glucanase thermostability conferred by the novel HvGlb2 allele. Increased β-glucanase thermostability is heritable and candidates identified in wild barley could improve malting and brewing quality in new varieties.

摘要

具有提高的热稳定性的新型大麦(1→3,1→4)-β-葡聚糖内切水解酶。快速可靠地降解(1→3,1→4)-β-葡聚糖以生产低粘度麦芽汁是麦芽大麦的基本要求。(1→3,1→4)-β-葡聚糖内切水解酶负责细胞壁β-葡聚糖的主要水解。分别编码 EI 和 EII 的 HvGlb1 和 HvGlb2 基因的β-葡聚糖酶基因变异在优秀和外来种质资源中进行了检查。鉴定了 6 个 EI 和 14 个 EII 同工酶,并且在大麦的原始祖先野生大麦(野生大麦)中发现了β-葡聚糖酶的显着差异。使用预测方法检查同工酶;鉴定的氨基酸取代的吉布斯自由能变化可预测酶稳定性的变化,以及同源建模可使用现有解决的 EII 结构检查新同工酶的结构。野生大麦品系中的 2 个 EI 和 4 个 EII 同工酶预测具有提高的大麦β-葡聚糖酶耐热性。在具有来自野生大麦和 cv Flagship 的野生 barley 等位基因的现有回交系中鉴定出一种新型 EII 候选物。在β-葡聚糖酶耐热性分析中检查了选定的近等基因系中的差异等位基因。野生大麦的 EII 通过新型 HvGlb2 等位基因表现出β-葡聚糖酶耐热性的显着提高。增加的β-葡聚糖酶耐热性是可遗传的,在野生大麦中鉴定的候选物可以改善新品种的麦芽和酿造质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验