Suppr超能文献

具有扶手椅形和锯齿形边缘的石墨烯纳米带规则平面阵列中的可调谐等离子体激元。

Tunable plasmons in regular planar arrays of graphene nanoribbons with armchair and zigzag-shaped edges.

作者信息

Vacacela Gomez Cristian, Pisarra Michele, Gravina Mario, Sindona Antonello

机构信息

Dipartimento di Fisica, Università della Calabria, Via P. Bucci, Cubo 30C, 87036 Rende (CS), Italy; INFN, sezione LNF, Gruppo collegato di Cosenza, Via P. Bucci, Cubo 31C, 87036 Rende (CS), Italy.

Dipartimento di Fisica, Università della Calabria, Via P. Bucci, Cubo 30C, 87036 Rende (CS), Italy; Departamento de Química, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7 (Módulo 13), 28049, Madrid, Spain.

出版信息

Beilstein J Nanotechnol. 2017 Jan 17;8:172-182. doi: 10.3762/bjnano.8.18. eCollection 2017.

Abstract

Recent experimental evidence for and the theoretical confirmation of tunable edge plasmons and surface plasmons in graphene nanoribbons have opened up new opportunities to scrutinize the main geometric and conformation factors, which can be used to modulate these collective modes in the infrared-to-terahertz frequency band. Here, we show how the extrinsic plasmon structure of regular planar arrays of graphene nanoribbons, with perfectly symmetric edges, is influenced by the width, chirality and unit-cell length of each ribbon, as well as the in-plane vacuum distance between two contiguous ribbons. Our predictions, based on time-dependent density functional theory, in the random phase approximation, are expected to be of immediate help for measurements of plasmonic features in nanoscale architectures of nanoribbon devices.

摘要

石墨烯纳米带中可调谐边缘等离子体和表面等离子体的最新实验证据及理论证实,为审视主要的几何和构象因素开辟了新机遇,这些因素可用于在红外到太赫兹频段调制这些集体模式。在此,我们展示了具有完美对称边缘的石墨烯纳米带规则平面阵列的外在等离子体结构,是如何受到每条纳米带的宽度、手性和晶胞长度,以及两条相邻纳米带之间的面内真空距离影响的。我们基于含时密度泛函理论在随机相位近似下的预测,有望对纳米带器件纳米级架构中的等离子体特征测量提供直接帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/063c/5301920/c9c8fb122a8c/Beilstein_J_Nanotechnol-08-172-g002.jpg

相似文献

1
Tunable plasmons in regular planar arrays of graphene nanoribbons with armchair and zigzag-shaped edges.
Beilstein J Nanotechnol. 2017 Jan 17;8:172-182. doi: 10.3762/bjnano.8.18. eCollection 2017.
2
Plasmon Modes of Graphene Nanoribbons with Periodic Planar Arrangements.
Phys Rev Lett. 2016 Sep 9;117(11):116801. doi: 10.1103/PhysRevLett.117.116801. Epub 2016 Sep 7.
3
Effects of edge on graphene plasmons as revealed by infrared nanoimaging.
Light Sci Appl. 2017 Feb 10;6(2):e16204. doi: 10.1038/lsa.2016.204. eCollection 2017 Feb.
4
Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies.
ACS Omega. 2018 Dec 19;3(12):17789-17796. doi: 10.1021/acsomega.8b02744. eCollection 2018 Dec 31.
6
Electronic states of graphene nanoribbons and analytical solutions.
Sci Technol Adv Mater. 2010 Nov 29;11(5):054504. doi: 10.1088/1468-6996/11/5/054504. eCollection 2010 Oct.
7
Edge and Surface Plasmons in Graphene Nanoribbons.
Nano Lett. 2015 Dec 9;15(12):8271-6. doi: 10.1021/acs.nanolett.5b03834. Epub 2015 Nov 23.
8
First-principles study of heat transport properties of graphene nanoribbons.
Nano Lett. 2011 Jan 12;11(1):214-9. doi: 10.1021/nl103508m. Epub 2010 Dec 15.
10
Relationship Between Stress Modulated Metallicity and Plasmon in Graphene Nanoribbons.
Chemphyschem. 2023 Dec 14;24(24):e202300348. doi: 10.1002/cphc.202300348. Epub 2023 Oct 20.

引用本文的文献

1
Massive and massless plasmons in germanene nanosheets.
Sci Rep. 2022 Nov 3;12(1):18624. doi: 10.1038/s41598-022-23058-3.
2
Adsorption of Mercury on Oxidized Graphenes.
Nanomaterials (Basel). 2022 Aug 31;12(17):3025. doi: 10.3390/nano12173025.
5
Drying-Time Study in Graphene Oxide.
Nanomaterials (Basel). 2021 Apr 19;11(4):1035. doi: 10.3390/nano11041035.
6
The Adsorption of Methylene Blue on Eco-Friendly Reduced Graphene Oxide.
Nanomaterials (Basel). 2020 Apr 4;10(4):681. doi: 10.3390/nano10040681.
7
Toward Large-Scale Production of Oxidized Graphene.
Nanomaterials (Basel). 2020 Feb 6;10(2):279. doi: 10.3390/nano10020279.

本文引用的文献

1
Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes.
Nano Lett. 2016 Nov 9;16(11):6850-6856. doi: 10.1021/acs.nanolett.6b02661. Epub 2016 Oct 10.
2
Plasmon Modes of Graphene Nanoribbons with Periodic Planar Arrangements.
Phys Rev Lett. 2016 Sep 9;117(11):116801. doi: 10.1103/PhysRevLett.117.116801. Epub 2016 Sep 7.
3
Edge and Surface Plasmons in Graphene Nanoribbons.
Nano Lett. 2015 Dec 9;15(12):8271-6. doi: 10.1021/acs.nanolett.5b03834. Epub 2015 Nov 23.
4
Antenna Enhanced Graphene THz Emitter and Detector.
Nano Lett. 2015 Aug 12;15(8):5295-301. doi: 10.1021/acs.nanolett.5b01635. Epub 2015 Jul 31.
5
Silicene field-effect transistors operating at room temperature.
Nat Nanotechnol. 2015 Mar;10(3):227-31. doi: 10.1038/nnano.2014.325. Epub 2015 Feb 2.
6
Highly confined low-loss plasmons in graphene-boron nitride heterostructures.
Nat Mater. 2015 Apr;14(4):421-5. doi: 10.1038/nmat4169. Epub 2014 Dec 22.
7
Graphene photonics, plasmonics, and broadband optoelectronic devices.
ACS Nano. 2012 May 22;6(5):3677-94. doi: 10.1021/nn300989g. Epub 2012 May 2.
8
Broadband graphene terahertz modulators enabled by intraband transitions.
Nat Commun. 2012 Apr 17;3:780. doi: 10.1038/ncomms1787.
9
Secondary electron spectra of graphene on Ni(111) surface.
J Nanosci Nanotechnol. 2011 Oct;11(10):9256-9. doi: 10.1166/jnn.2011.4309.
10
Quantum finite-size effects in graphene plasmons.
ACS Nano. 2012 Feb 28;6(2):1766-75. doi: 10.1021/nn204780e. Epub 2012 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验