Suppr超能文献

在石墨烯-氮化硼异质结构中高度受限的低损耗等离子体。

Highly confined low-loss plasmons in graphene-boron nitride heterostructures.

机构信息

ICFO - Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain.

Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA.

出版信息

Nat Mater. 2015 Apr;14(4):421-5. doi: 10.1038/nmat4169. Epub 2014 Dec 22.

Abstract

Graphene plasmons were predicted to possess simultaneous ultrastrong field confinement and very low damping, enabling new classes of devices for deep-subwavelength metamaterials, single-photon nonlinearities, extraordinarily strong light-matter interactions and nano-optoelectronic switches. Although all of these great prospects require low damping, thus far strong plasmon damping has been observed, with both impurity scattering and many-body effects in graphene proposed as possible explanations. With the advent of van der Waals heterostructures, new methods have been developed to integrate graphene with other atomically flat materials. In this Article we exploit near-field microscopy to image propagating plasmons in high-quality graphene encapsulated between two films of hexagonal boron nitride (h-BN). We determine the dispersion and plasmon damping in real space. We find unprecedentedly low plasmon damping combined with strong field confinement and confirm the high uniformity of this plasmonic medium. The main damping channels are attributed to intrinsic thermal phonons in the graphene and dielectric losses in the h-BN. The observation and in-depth understanding of low plasmon damping is the key to the development of graphene nanophotonic and nano-optoelectronic devices.

摘要

石墨烯等离激元被预测具有超强的场限制和非常低的阻尼,这使得新型的亚波长超材料、单光子非线性、超强的光物质相互作用和纳米光电子开关得以实现。尽管所有这些都需要低阻尼,但到目前为止,已经观察到了很强的等离激元阻尼,石墨烯中的杂质散射和多体效应被认为是可能的解释。随着范德瓦尔斯异质结构的出现,已经开发出了新的方法来将石墨烯与其他原子级平坦的材料集成在一起。在本文中,我们利用近场显微镜来成像高质量石墨烯封装在两层六方氮化硼(h-BN)之间的传播等离激元。我们在实空间中确定了色散和等离激元阻尼。我们发现了前所未有的低等离激元阻尼,同时具有强的场限制,并证实了这种等离子体媒质的高度均匀性。主要的阻尼通道归因于石墨烯中的本征热声子和 h-BN 中的介电损耗。对低等离激元阻尼的观察和深入理解是发展石墨烯纳米光子学和纳米光电子学器件的关键。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验