CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France.
FEBS J. 2017 Aug;284(15):2324-2344. doi: 10.1111/febs.14053. Epub 2017 Mar 22.
DNA double-strand breaks (DSBs) are highly toxic lesions that can lead to profound genome rearrangements and/or cell death. They routinely occur in genomes due to endogenous or exogenous stresses. Efficient repair systems, canonical non-homologous end-joining and homologous recombination exist in the cell and not only ensure the maintenance of genome integrity but also, via specific programmed DNA double-strand breaks, permit its diversity and plasticity. However, these repair systems need to be tightly controlled because they can also generate genomic rearrangements. Thus, when DSB repair is not properly regulated, genome integrity is no longer guaranteed. In this review, we will focus on non-programmed genome rearrangements generated by DSB repair, in somatic cells. We first discuss genome rearrangements induced by homologous recombination and end-joining. We then discuss recently described rearrangement mechanisms, driven by microhomologies, that do not involve the joining of DNA ends but rather initiate DNA synthesis (microhomology-mediated break-induced replication, fork stalling and template switching and microhomology-mediated template switching). Finally, we discuss chromothripsis, which is the shattering of a localized region of the genome followed by erratic rejoining.
DNA 双链断裂 (DSB) 是一种高度有毒的损伤,可导致广泛的基因组重排和/或细胞死亡。它们通常由于内源性或外源性应激而在基因组中发生。细胞中存在有效的修复系统,包括经典的非同源末端连接和同源重组,它们不仅确保了基因组完整性的维持,而且通过特定的程序化 DNA 双链断裂,允许基因组的多样性和可塑性。然而,这些修复系统需要被严格控制,因为它们也可能产生基因组重排。因此,当 DSB 修复不能被正确调节时,基因组完整性就不再得到保证。在这篇综述中,我们将重点讨论体细胞中由 DSB 修复引起的非程序化基因组重排。我们首先讨论同源重组和末端连接诱导的基因组重排。然后,我们讨论最近描述的重排机制,这些机制由微同源驱动,不涉及 DNA 末端的连接,而是启动 DNA 合成(微同源介导的断裂诱导复制、叉停滞和模板转换以及微同源介导的模板转换)。最后,我们讨论染色体重排,这是基因组局部区域的破碎,随后是不规则的连接。