Suppr超能文献

通过光学自旋轨道耦合定制 MoS 激子-等离子体相互作用。

Tailoring MoS Exciton-Plasmon Interaction by Optical Spin-Orbit Coupling.

机构信息

School of Physics, State Key Lab for Mesoscopic Physics; Academy for Advanced Interdisciplinary Studies; Collaborative Innovation Center of Quantum Matter, Peking University , Beijing 100871, China.

NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technology University , Singapore 639798.

出版信息

ACS Nano. 2017 Feb 28;11(2):1165-1171. doi: 10.1021/acsnano.6b06834. Epub 2016 Dec 7.

Abstract

Molybdenum disulfide (MoS) monolayer as one of the atomic thickness two-dimensional materials has remarkable electronic and optical properties, which is an ideal candidate for a wide range of optoelectronic applications. However, the atomic monolayer thickness poses a significant challenge in MoS photoluminescence emission due to weak light-matter interaction. Here, we investigate the MoS exciton-plasmon interaction with spin-orbit coupling of light. The plasmonic spiral rings with subwavelength dimensions are designed and fabricated on hybrid substrates. MoS photoluminescence enhancement can be actively controlled by changing the incident optical spin states, laser powers, and the nanospiral geometries, which is arising from the change of field enhancement at near-field region. Planar light-emitting devices based on spin-orbit coupling (SOC) effect were further realized and flexibly controlled by changing the polarization of light. The SOC effect is discussed by the accumulation of geometric and dynamic phases, which can be demonstrated and elaborated by the Majorana sphere model. Our results provide a way to manipulate MoS light-matter interaction actively and can be further applied in the spin-dependent light-emitting devices at the nanoscale.

摘要

二硫化钼(MoS)单层作为原子厚度的二维材料之一,具有显著的电子和光学性质,是广泛应用于光电领域的理想候选材料。然而,由于光物质相互作用较弱,原子单层厚度给 MoS 光致发光发射带来了重大挑战。在这里,我们研究了具有光自旋轨道耦合的 MoS 激子-等离子体相互作用。在混合衬底上设计并制造了具有亚波长尺寸的等离子体螺旋环。通过改变入射光的自旋态、激光功率和纳米螺旋几何形状,可以主动控制 MoS 光致发光增强,这是由于近场区域的场增强变化引起的。进一步通过改变光的偏振,实现了基于自旋轨道耦合(SOC)效应的平面发光器件,并可灵活控制。通过积累几何和动态相位来讨论 SOC 效应,这可以通过马约拉纳球体模型进行演示和阐述。我们的研究结果提供了一种主动控制 MoS 光物质相互作用的方法,并可进一步应用于纳米尺度的自旋相关发光器件中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验